胰腺导管腺癌是最常见的胰腺癌,被认为是全球重大健康问题。化疗和手术是目前胰腺癌治疗的主要手段;然而,只有少数病例适合手术,大多数病例会经历复发。与 DNA 或肽疫苗相比,胰腺癌的 mRNA 疫苗更有前景,因为它们具有递送、增强免疫反应和降低突变倾向性等优点。我们通过分析 S100 家族蛋白构建了一种 mRNA 疫苗,S100 家族蛋白都是晚期糖基化终产物受体的主要激活剂。我们应用了免疫信息学方法,包括物理化学性质分析、结构预测和验证、分子对接研究、电子克隆和免疫模拟。设计的 mRNA 疫苗的分子量估计为 165023.50 Da 且溶解性高度良好(平均亲水性为 -0.440)。在结构评估中,该疫苗似乎是一种稳定且功能良好的蛋白质(Z 得分为 -8.94)。此外,对接分析表明该疫苗对 TLR-2 和 TLR-4 受体具有高亲和力。此外,“疫苗—TLR-2”(-141.07 kcal/mol)和“疫苗—TLR-4”(-271.72 kcal/mol)复合物的广义 Born 和表面积溶剂化分析的分子力学也表明对受体具有很强的结合亲和力。密码子优化也提供了高表达水平,GC 含量为 47.04%,密码子适应指数得分为 1.0。一段时间内还观察到记忆 B 细胞和 T 细胞的出现,辅助 T 细胞和免疫球蛋白(IgM 和 IgG)水平增加。此外,预测mRNA疫苗的最小自由能为-1760.00 kcal/mol,表明疫苗进入细胞、转录和表达后具有良好的稳定性。该假想疫苗为未来胰腺癌的研究和治疗开发提供了开创性的工具。
抽象锂硫(LI-S)电池是最有希望的下一代高能密度二级电池之一。然而,在循环过程中,诸如航天飞机效应,缓慢的反应动力学和锂树突生长等问题所阻碍了它们的实际应用。本报告着重于高能密度LI-S电池所需的关键材料和设备设计。它通过检查催化剂表面的电子结构来提出了阴极催化剂的合理设计。具体而言,它引入了过渡金属催化剂的D轨道和锂多硫化物的P-轨道之间的杂交概念,这些锂多硫化物可以用作筛选Li-Scowers单原子催化剂的描述符。机器学习被用来开发一个可以有效筛选过渡金属化合物催化剂的二进制描述符,从而阐明了LI-S催化中的电子和结构效应。提出了一种普遍的策略来调整催化剂的旋转和轨道拓扑。该报告还探讨了LI-S电池催化剂中随时间推移的不同轨道杂交之间的过渡。为了解决锂树突的不受控制的生长以及相关的安全风险,在共同调节的质量和电荷运输下,Li-S阴极与阳极之间的耦合机制被揭露,从而指导电极结构的合理设计。提出了基于分层结构的人造固体电解质相(SEI)层,以稳定锂金属阳极并防止树突形成。另外,通过调整电解质的溶剂化结构,可以实现SEI层的分子级控制,从而导致锂金属阳极的稳定循环。建立在这个基础上,已经制定了制备高硫载电极的系统策略。该报告研究了LI-S完整细胞的构建,分析了关键技术和过程参数如何影响Li-S袋细胞的电荷分离和循环性能。优化这些参数后,小袋单元的能量密度超过400 WHkg⁻。
氧化还原液流电池 (RFB) 因其灵活的设计、可扩展性和低成本而成为固定储能应用的一项有前途的技术。在 RFB 中,能量以可流动的氧化还原活性材料 (redoxmers) 的形式传输,这些材料存储在外部并在运行期间泵送到电池中。要进一步提高 RFB 的能量密度,就需要设计具有更宽氧化还原电位窗口和更高溶解度的氧化还原聚合物。此外,设计具有荧光自报告功能的氧化还原聚合物可以监测 RFB 的健康状况。为了加速发现具有所需特性的氧化还原聚合物,最先进的机器学习 (ML) 方法(例如多目标贝叶斯优化 (MBO))非常有用。在这里,我们首先采用密度泛函理论计算,基于 2,1,3-苯并噻二唑 (BzNSN) 核心结构,为 1400 个氧化还原聚合物分子生成还原电位、溶剂化自由能和吸收波长的数据库。根据计算出的属性,我们确定了 22 种兼具所有所需属性的帕累托最优分子。我们进一步利用这些数据开发和基准测试了 MBO 方法,以快速有效地识别具有多种目标属性的候选分子。使用 MBO,与蛮力或随机选择方法相比,从 1400 个分子数据集中识别最佳候选分子的效率至少提高 15 倍。重要的是,我们利用这种方法从 100 万个基于 BzNSN 的分子的未知数据库中发现了有前途的氧化还原体,我们发现了 16 种新的帕累托最优分子,其性能比最初的 1400 种分子有显著改善。我们预计这种主动学习技术是通用的,可用于发现满足多种所需属性标准的任何一类功能材料。
另一方面,我们可以通过不同的方法检查文献是否对固定相的表征进行表征。但是,所有这些方法的起点是基于选择作为单个二阶相互作用的一些化合物的保留数据,这些相互作用可能会在气相色谱分离下分析物和固定相之间发生。在1966年发表的文章中,Rohrschneider表征了22个Sta tionary阶段的极性,其保留指数的5种模型组分的保留指数有所不同,这些模型组件是苯,乙醇,乙醇,乙基甲基酮,硝基甲烷和吡啶[3]。参考值的差异值是通过在Alololar squalane固定相上测量的模型化合物的指标提供的。使用这些测试化合物,他涵盖了二阶相互作用,例如分散,π-π和诱导相互作用,电子对受体和电子对供体行为。McReynolds [4]于1970年进一步开发了这种方法,后者部分取代了测试化合物并部分扩展了它们。McReynolds常数(MRC)被广泛用于描述气相色谱站的极性Ary相,为均匀的COM Parison提供了机会。对于CHRO Matographic指数(CPI),将量表定义为0到100,其中Smocalane代表最极性的零点,而100%Cyano Propyl Siloxane相代表最极性100值。根据测量的MRC val UES的一定固定相可以放在0到100之间的尺度上。1990年Abraham等。1990年Abraham等。许多作者根据不同的考虑(McReynolds收集的大量CHRO Matographic数据)(在两个温度LEV ELS处于77个固定相测量的376种化合物的保留指数,在226个固定阶段的10种化合物的保留指数[5] [5]。介绍了Solva Tion参数模型,以描述具有5个常数的McReynolds 77平台ARY相位,而不是一个单个极性指数[5]。基于溶剂化参数模型Poole [1],使用多个线性回归分析构建了52个壁涂层毛细管柱的色谱系统常数数据库。
摘要:还原反应(ORR)对于各种可再生能源技术至关重要。ORR的重要催化剂是嵌入氮掺杂石墨烯(Fe-n-c)中的单个铁原子。然而,ORR在Fe-N-C上的限速步骤尚不清楚,会严重阻碍理解和改进。在这里,我们报告了所有步骤的激活能,该激活能由恒定电极电位下的缩写分子动力学模拟计算得出。与普遍认为氢化步骤限制了反应速率的普遍信念相反,我们发现限制步骤是氧分子在Fe上取代吸附水。这是通过H 2 O解吸和O 2吸附的一致运动发生的,而不会使现场裸露。有趣的是,尽管通常被认为是潜在独立的“热”过程,但屏障仍会随电极电势而减小。这可以通过更强的Fe -O 2结合和较低的Fe -H 2 O结合在较低电位上的结合而解释,因为O 2获得了电子,并且H 2 O向催化剂捐赠电子。我们的研究提供了对Fe -n -c的ORR的新见解,并突出了动力学研究在异质电化学中的重要性。■简介氧气还原反应(ORR)对于多种可再生能源技术(例如燃料电池和金属 - 空气电池)至关重要。铂是ORR表现最好的催化剂。但是,它遭受了高昂的损害,这阻碍了其商业用途。1-4为了克服这一障碍,巨大的研究工作致力于寻找PT的具有成本效益的替代催化剂。5-10最有前途的候选者之一是嵌入氮掺杂石墨烯中的单铁原子(Fe-n-c),通常在酸性条件下使用。11-18尽管对该催化剂进行了广泛的研究,但仍未清楚的步骤限制了Fe -n -n - -C上的ORR速率。缺乏此关键信息显着限制了催化剂的发展。通常建议的ORR fe -n - c的途径具有以下步骤(图1 a): * + o 2→ * oo, * oo + h + h + + e-→ * ooh, * ooh + h + h + h + h + + e-→ * o + h 2 O,限制步骤的实验确定是具有挑战性的。另一方面,密度功能理论(DFT)提供了一种计算反应能量(包括激活能量)的方法,因此原则上可以回答有关速率步骤的问题。然而,由于系统的复杂性,很难直接计算异质电化学的激活能,这需要仔细处理溶剂化和电极电位的影响。19-29因此,大多数计算研究都根据以下假设,即最热的上坡(或最小下坡)步骤具有最高的活化能,并使用它来推断动力学。那些
1。伯特利·塔雷基(Bethel Tarekegne),丽贝卡·奥尼尔(Rebecca O'Neil),杰里米(Jeremy)Twitchell。“存储作为股票资产。”当前的可持续/可再生能源报告8,149-155(2021年9月)。2。Charlie Vartanian,Matt Paiss,Vilayanur Viswanathan,Jaime Kolln,David Reed。 “审查储能系统的代码和标准”。 当前的可持续/可再生能源8,138-148(2021年9月)。 3。 Patrick Balducci,Kendall Mongird,Mark Weimar。 “了解储能对电源系统的可靠性和弹性应用的价值。” 当前的可持续/可再生能源报告8,131-137(2021年9月)。 4。 Xiang Li,Peiyuan Gao,Yun-Yu Lai,J。DavidBazak,Aaron Hollas,Heng-Yi Lin,Vijayakumar Murugesan,Shuyuan Zhang,Chung-Fu Cheng,Wei-Yao Tung,Yuehting Lai,Yuehting Lai,Yueh-ting Lai,Ruozhu Feng,Yien Yien wang,Wei-wang,Weunwang,wang,W。 “有机铁复合体的对称性设计,用于长循环性有机氧化还原流动电池。” 自然能源6,873-881(2021年9月)。 5。 Ismael A. Rodriguez-Perez,Hee-Jung Chang,Matthew Fayette,Bhuvaneswari M. Sivakumar,Daiwon Choi,Xiaolin Li,David Reed。 “对轻度水解物中Zn – Mno 2电池中氧化还原过程的机理研究。” 材料化学杂志A 9(36),20766-20775(2021年8月)。 6。 Alasdair J. Crawford,Daiwon Choi,Patrick J. Balducci,Venkat R. Subramanian,Vilayanur V. Viswanathan。 “锂离子电池物理学和基于统计的健康模型。” 7。 8。 9。Charlie Vartanian,Matt Paiss,Vilayanur Viswanathan,Jaime Kolln,David Reed。“审查储能系统的代码和标准”。当前的可持续/可再生能源8,138-148(2021年9月)。3。Patrick Balducci,Kendall Mongird,Mark Weimar。“了解储能对电源系统的可靠性和弹性应用的价值。”当前的可持续/可再生能源报告8,131-137(2021年9月)。4。Xiang Li,Peiyuan Gao,Yun-Yu Lai,J。DavidBazak,Aaron Hollas,Heng-Yi Lin,Vijayakumar Murugesan,Shuyuan Zhang,Chung-Fu Cheng,Wei-Yao Tung,Yuehting Lai,Yuehting Lai,Yueh-ting Lai,Ruozhu Feng,Yien Yien wang,Wei-wang,Weunwang,wang,W。“有机铁复合体的对称性设计,用于长循环性有机氧化还原流动电池。”自然能源6,873-881(2021年9月)。5。Ismael A. Rodriguez-Perez,Hee-Jung Chang,Matthew Fayette,Bhuvaneswari M. Sivakumar,Daiwon Choi,Xiaolin Li,David Reed。 “对轻度水解物中Zn – Mno 2电池中氧化还原过程的机理研究。” 材料化学杂志A 9(36),20766-20775(2021年8月)。 6。 Alasdair J. Crawford,Daiwon Choi,Patrick J. Balducci,Venkat R. Subramanian,Vilayanur V. Viswanathan。 “锂离子电池物理学和基于统计的健康模型。” 7。 8。 9。Ismael A. Rodriguez-Perez,Hee-Jung Chang,Matthew Fayette,Bhuvaneswari M. Sivakumar,Daiwon Choi,Xiaolin Li,David Reed。“对轻度水解物中Zn – Mno 2电池中氧化还原过程的机理研究。”材料化学杂志A 9(36),20766-20775(2021年8月)。6。Alasdair J. Crawford,Daiwon Choi,Patrick J. Balducci,Venkat R. Subramanian,Vilayanur V. Viswanathan。“锂离子电池物理学和基于统计的健康模型。”7。8。9。权力来源杂志501,230032(2021年7月)。Hee-Jung Chang,Ismael A. Rodriguez-Perez,Matthew Fayette,Nathan L. Canfield,Huilin Pan,Daiwon Choi,Xiaolin Li,David Reed。“水基粘合剂对轻度水性锌电池中锰二氧化碳阴极的电化学性能的影响。”碳能3:(3),473-481(2021年7月)。Bhuvaneswari M. Sivakumar,Venkateshkumar Prabhakaran,Kaining Duanum,Edwin Thomsen,Brian Berland,Nicholas Gomez,David Reed,Vijayakumar Murugesan。“钒氧化还原流量电池中碳电极的长期结构和化学稳定性。”ACS应用能源材料4:(6),6074-6081(2021年6月)。Xiaowen Zhan,Minyuan M. Li,J. Mark Weller,Vincent L. Sprenkle,Guosheng Li。 “最近用于卤化钠卤化物电池的阴极材料的进度。” 材料14:(12),3260(2021年6月)。 10。 Ruozhu Feng,Xin Zhang,Vijayakumar Murugesan,Aaron Hollas,Ying Chen,Yuyan Shao,Eric Walter,Nadeesha P. N. Wellala,Litao Yan,Kevin M. Rosso,Kevin M. Rosso,Wei Wang。 “可逆的酮氢化和脱氢有机氧化还原流量电池。” 科学372:(6544),836-840(2021年5月)。 11。 J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。 “使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。 物理化学杂志B 125(19),5089-5099(2021年5月)。 12。 junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。 13。 14。Xiaowen Zhan,Minyuan M. Li,J.Mark Weller,Vincent L. Sprenkle,Guosheng Li。 “最近用于卤化钠卤化物电池的阴极材料的进度。” 材料14:(12),3260(2021年6月)。 10。 Ruozhu Feng,Xin Zhang,Vijayakumar Murugesan,Aaron Hollas,Ying Chen,Yuyan Shao,Eric Walter,Nadeesha P. N. Wellala,Litao Yan,Kevin M. Rosso,Kevin M. Rosso,Wei Wang。 “可逆的酮氢化和脱氢有机氧化还原流量电池。” 科学372:(6544),836-840(2021年5月)。 11。 J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。 “使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。 物理化学杂志B 125(19),5089-5099(2021年5月)。 12。 junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。 13。 14。Mark Weller,Vincent L. Sprenkle,Guosheng Li。“最近用于卤化钠卤化物电池的阴极材料的进度。”材料14:(12),3260(2021年6月)。10。Ruozhu Feng,Xin Zhang,Vijayakumar Murugesan,Aaron Hollas,Ying Chen,Yuyan Shao,Eric Walter,Nadeesha P. N. Wellala,Litao Yan,Kevin M. Rosso,Kevin M. Rosso,Wei Wang。“可逆的酮氢化和脱氢有机氧化还原流量电池。”科学372:(6544),836-840(2021年5月)。11。J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。 “使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。 物理化学杂志B 125(19),5089-5099(2021年5月)。 12。 junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。 13。 14。J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。“使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。物理化学杂志B 125(19),5089-5099(2021年5月)。12。junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。13。14。“在可充电锌电池复兴中的十字路口。”今天的材料45:191-212(2021年5月)。Nimat Shamim,Edwin C. Thomsen,Vilayanur V. Viswanathan,David Reed,Vincent Sprenkle,Guosheng Li。 “在剃须占空比下评估斑马电池模块。” 材料14:(9),2280(2021年4月)。 Biwei Xiao,Yichao Wang,Sha Tan,Miao Song,Xiang Li,Yuxin Zhang,Feng Lin,Kee Sung Han,Fredrick Omenya,Khalil Amine,Xiao-Qiao-Qinging Yang,Yang,David Reed,David Hu,Yanyan Hu,Gui-liang Xu,Enyyuan liia liia li,XIA,XIA,XIA,XIA,XINIA,XINIA,XINININ kininnin。 “富含锰的层状钠阴极的空缺 - 实现了O3相稳定。” Angewandte Chemie International Edition 60(15),8258-8267(2021年4月)。 15。 di Wu,Xu MA。 “用于控制和尺寸连接网格的能量存储的建模和优化方法:审查。” 当前的可持续/可再生能源报告(2021年3月)。 16。 di Wu,Xu MA,Patrick Balducci,Dhruv Bhatnagar。 “对幕后光伏的经济评估,并在夏威夷群岛上配对电池。” 应用能源286(2021年3月)。 17。 Vijayakumar Murugesan,Zimin Nie,Xin Zhang,Peiyuan Gao,Zihua Zhu,Qian Huang,Litao Yan,David Reed,Wei Wang。 “通过可调溶剂化学的化学反应加速了钒氧化还原流量电池的设计。” 细胞报告物理科学2(2),100323(2021年2月)。 18。 “应力和与界面兼容的红磷阳极,用于高能和耐用的钠离子电池。” ACS Energy Letters 6,547-556(2021年2月)。Nimat Shamim,Edwin C. Thomsen,Vilayanur V. Viswanathan,David Reed,Vincent Sprenkle,Guosheng Li。“在剃须占空比下评估斑马电池模块。”材料14:(9),2280(2021年4月)。Biwei Xiao,Yichao Wang,Sha Tan,Miao Song,Xiang Li,Yuxin Zhang,Feng Lin,Kee Sung Han,Fredrick Omenya,Khalil Amine,Xiao-Qiao-Qinging Yang,Yang,David Reed,David Hu,Yanyan Hu,Gui-liang Xu,Enyyuan liia liia li,XIA,XIA,XIA,XIA,XINIA,XINIA,XINININ kininnin。“富含锰的层状钠阴极的空缺 - 实现了O3相稳定。”Angewandte Chemie International Edition 60(15),8258-8267(2021年4月)。15。di Wu,Xu MA。“用于控制和尺寸连接网格的能量存储的建模和优化方法:审查。”当前的可持续/可再生能源报告(2021年3月)。16。di Wu,Xu MA,Patrick Balducci,Dhruv Bhatnagar。“对幕后光伏的经济评估,并在夏威夷群岛上配对电池。”应用能源286(2021年3月)。17。Vijayakumar Murugesan,Zimin Nie,Xin Zhang,Peiyuan Gao,Zihua Zhu,Qian Huang,Litao Yan,David Reed,Wei Wang。“通过可调溶剂化学的化学反应加速了钒氧化还原流量电池的设计。”细胞报告物理科学2(2),100323(2021年2月)。18。“应力和与界面兼容的红磷阳极,用于高能和耐用的钠离子电池。”ACS Energy Letters 6,547-556(2021年2月)。Xiang Liu, Biwei Xiao, Amine Daali, Xinwei Zhou, Zhou Yu, Xiang Li, Yuzi Liu, Liang Yin, Zhenzhen Yang, Chen Zhao, Likun Zhu, Yang Ren, Lei Cheng, Shabbir Ahmed, Zonghai Chen, Xiaolin Li, Gui-Liang Xu, Khalil胺。19。Minyuan M. Li,Xiaochuan Lu,Xiaowen Zhan,Mark H. Engelhard,Jeffrey F. Bonnett,Evgueni Polikarpov,Keeyoung Jung,David M. Reed,Vincent Sprenkle,Vincent Sprenkle,Guosheng Li。“高温硫磺电池在低温下通过优质的熔融性可润湿性。”化学通信57(1)45-48(2021年1月)。20。Maitri Uppaluri,Akshay Subramaniam,Lubhani Mishra,Vilayanur Viswanathan,Venkat R. Subramanian。“传输模型可以预测锂金属电池中的逆特征而不修饰动力学吗?”电化学学会杂志167,第16号,文章编号160547(2020年12月)。21。Qian Huang,Bin Li,Chaojie Song,Zhengming Jiang,Alison Platt,Khalid Fatih,Christina Bock,Darren Jang,David Reed。“通过稳定的参考电极对全瓦数氧化还原流量电池进行原位可靠性研究。”电化学学会杂志165,第16号,第160541条(2020年12月)。22。Jeremy Twitchell,Jeffrey Taft,Rebecca O'Neil,Angela Becker-Dippmann。2021,PNNL-30172,西北国家实验室,华盛顿州Richland。 嵌入式网格储能的调节含义23。 丽贝卡·奥尼尔(Rebecca O'Neil),杰里米(Jeremy)Twitchell,Danielle Preziuso。 2021,PNNL-30949,西北部国家实验室,华盛顿州里奇兰。 能源公平与环境正义研讨会报告2021,PNNL-30172,西北国家实验室,华盛顿州Richland。嵌入式网格储能的调节含义23。丽贝卡·奥尼尔(Rebecca O'Neil),杰里米(Jeremy)Twitchell,Danielle Preziuso。2021,PNNL-30949,西北部国家实验室,华盛顿州里奇兰。 能源公平与环境正义研讨会报告2021,PNNL-30949,西北部国家实验室,华盛顿州里奇兰。能源公平与环境正义研讨会报告
使用基于有机的解决方案Jinghua Sun,Eric Dahlgren,Dian Tang,Thomas O'Keefe和Matthew O'Keefe Missouri-Rolla大学,材料研究中心,Mo Keryn Lian and Manes Eliacin eliacin Surformation Schaaumburg,Ilversicer Eleptial Centrip for SchoChem eimption for Schaemchem apperiation Formation Eleption Forroction Eleption Forroctial Eleptial Centruity Eleastro apperiation Fermation Eleption Ferromation Eleption Forrosic for SchoChem,在研究电镀浴时,正在研究环境良性,基于有机的解决方案。电镀浴溶液由萃取剂和稀释剂组成,用于常规有机溶剂提取中的类型。有机物是非常差的电解导体,只能维持短范围的电化学反应。沉积机制涉及溶解不太高贵的基板金属,同时在基板表面上同时沉积了更贵重的金属颗粒,类似于在水溶液中浸入的浸入。通过以复合离子的形式加载有机提取物,可以证明该概念的可行性。然后将金属轴承有机液体与印刷电路板行业常用的空白或图案铜和镍表面接触。在适当的加工条件下实现了有机液体的连续,粘附的金和银表面饰面的沉积。金膜仅沉积在底物的裸露金属表面上,这表明选择性区域沉积过程类似于浸入板。扫描电子显微镜(SEM)表明膜由纳米大小的颗粒组成。引言基于有机溶剂提取溶液的新沉浸式电镀工艺,可以替代正在开发应用程序中使用的现有过程,例如电子镍 - 浸入金(ENIG)。该过程的独特方面是,板是在有机培养基中而不是在常规的水性培养基或诸如酒精之类的极性有机液体中进行的。有机培养基在长时间内具有良好的稳定性,低波动率,低毒性,高闪光点,低电导率,低表面张力,水相中的低溶解度,低成本和商业可用性。有机浸入过程中使用的有机溶剂最初是用于用于将金属离子与水溶液分离的溶剂提取过程开发的。有机液体通常由混合稀释剂混合的金属萃取剂组成。提取物有三种主要分类:阴离子交换,阳离子交换和溶剂化提取物。通常构成有机液体的主要部分的稀释剂可能从本质上是脂肪族到基本芳香化合物。萃取剂和稀释剂在水相中都不溶于溶解。选择萃取剂和稀释剂是溶剂提取过程成功的关键因素。对于金属沉积过程同样重要。当前正在开发的有机沉积过程源自较早称为电流剥离的过程。1该过程最初是为了从金属恢复行业商业上使用的有机溶剂中去除杂质而开发的。电剥离是一种自发的电化学过程,其中固体金属被用作还原剂,以去除有机液体中的更高贵的金属离子。在先前的研究中,成功证明了使用固体金属还原剂从有机溶剂中的Fe 3+,Cu 2+,Pb 2+和Au 3+的阳离子的电剥离。2-4利用传统有机溶剂的独特特性,利用电化学驱动的反应将技术扩展到金属沉积过程。关于从有机液体中沉积的金属沉积的初步研究,这些金属集中于产生Cu或Pd纳米级颗粒作为种子层,以随后在薄扩散屏障材料上沉积电铜。5-6的其他研究导致了将黄金和白银沉积到印刷电路板行业常用的镍和铜表面上的过程。金或银离子可以通过与含有溶解金或银色化合物(例如AUCL 3或Agno 3)的水溶液混合到有机浴中。然后,在将金属轴承相分开以用于沉积过程之前,有机相和水相可以沉降。将金属离子加载到有机浴中的另一种方法是将金属盐直接溶解在有机溶液中。
课程描述。有机化学原理及其在反应机理中的应用。详细介绍有机化学的理论和原理;有机化学中的键合和结构、立体化学、有机化学中的反应中间体和过渡态理论;动力学和热力学方法。还将强调通过计算化学探索这些概念。先决条件:CHM 2210、2211(或一年的本科有机化学)和 CHM 5224。教学大纲。以下教学大纲可能会更改。更新版本和阅读作业将在 Canvas 上提供(见下文)。这些章节参考了课程的主要教科书《高级有机化学:A 部分:结构和机制》,第五版》。将提供《有机化合物立体化学》(SOC)和《有机化学机理和理论》,第三版(MTOC)中的其他课程阅读材料。课程 #1 1 月 12 日课程介绍/概述。 1.1 分子结构和价键概念 第 2 节 1 月 14 日 1.2 分子轨道理论与方法 第 3 节 1 月 19 日 T1.1、T1.2、T1.3、键合主题 第 4 节 1 月 21 日 2.1 构型 第 5 节 1 月 26 日 SOC 4.1–4.6 对称性、点群 第 6 节 1 月 28 日 2.2-2.3 构象、分子力学 PS#1 DUE 第 7 节 2 月 2 日 2.4–2.6、T2.1、T2.2、T2.3 反应立体化学、立体电子效应 第 8 节 2 月 4 日 3.1、MTOC 2.3 热力学稳定性、Benson 基团加成性 PS #2 DUE 第 9 节 2 月 9 日 期中考试 I(第 1-3.1 章) 第 10 节 2 月 11 日 3.2 化学动力学 第 11 节 2 月16 3.3 热力学稳定性和反应速率 课堂 #12 二月 18 3.4–3.5 电子取代基效应、同位素效应 课堂 #13 二月 23 3.6 线性自由能关系 课堂 #14 二月 25 3.7–3.8 催化、溶剂效应 课堂 #15 三月 2 4.1 亲核取代机制 PS #3 DUE 课堂 #16 三月 4 4.2–4.3 结构和溶剂化效应、邻基效应 课堂 #17 三月 9 4.4、T4.1 碳正离子、石油加工中的碳正离子 PS #4 DUE 课堂 #18 三月 11 期中考试 II(第 3.2-4 章) 课堂 #19 三月 16 5.1–5.9 加成反应 课堂 #20 三月 18 5.10 消除反应 课堂 #21 三月23 6.1–6.5、T3.1 MTOC 3.3–3.4 碳氢化合物酸性、碳负离子和碳亲核试剂 第 22 课 3 月 25 日 7.1–7.7 羰基化合物 PS #5 DUE 第 23 课 3 月 30 日 8.1–8.6 芳香性 第 24 课 4 月 1 日 9.1–9.5 芳香取代 PS #6 DUE 第 25 课 4 月 6 日 期中考试 III(第 5-9 章) 第 26 课 4 月 8 日 10.1–10.6 协同周环反应 第 27 课 4 月 13 日 11.1-11.6 自由基的生成和表征、机理和反应 第 28 课 4 月 15 日 12.1–12.4 光化学、光化学反应 PS #7 DUE 第 29 课 4 月 20 日 期末考试 复习或补课 期末考试 4 月 27 日 期末考试(累计)星期二,4 月 27 日,上午 7:30 – 10:30 所需教材:Carey, FA; Sundberg, RJ 高级有机化学:第 A 部分:结构和机制,第五版;Springer:纽约,2007 年(ISBN 978-0-387-68346-1,平装本,Amazon.com,50.27 美元)。所需软件:Spartan,学生版(适用于 Macintosh 或 Windows)。波函数。wavefun.com(50 美元)https://www.wavefun.com/spartan-student-pricing 还有许多其他合适的免费软件应用程序可以替代它——尤其是针对 PC 平台。例如,NWChem https://nwchemgit.github.io/、ORCA https://cec.mpg.de/orcadownload/、HyperChem https://it.chem.ufl.edu/services/available-software/ 请参阅:https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_software