晚期内体/溶酶体(LELS)对于许多生理过程至关重要,它们的功能障碍与许多疾病有关。蛋白质组学分析已经鉴定出数百种LEL蛋白,但是,这些蛋白是否均匀地存在于每个LEL上,或者是否存在具有独特蛋白质组成的细胞类型依赖性LEL亚群,尚不清楚。我们采用了定量的多重DNA-油漆超分辨率方法来检查单个LELS上六种关键LEL蛋白(Lamp1,Lamp2,CD63,TMEM192,NPC1和LAMTOR4)的分布。虽然LAMP1和LAMP2在LEL中含量丰富,但标志着公共种群,大多数分析的蛋白质与特定的LEL亚群有关。我们的多重成像方法基于其独特的膜蛋白组成,最多鉴定出多达八个不同的LEL亚群。此外,我们对这些亚群和线粒体之间的空间关系的分析表明,NPC1阳性LELS的细胞类型特异性趋势与线粒体紧密地位。我们的方法将广泛适用于在许多生物学环境中用单细胞器分辨率来确定细胞器异质性。
摘要:罕见病或孤儿病是指与一般人群相比,影响少数人的疾病。其中,我们发现了溶酶体贮积症 (LSD),这是一组罕见的代谢疾病,其特征是酶突变导致糖脂储存异常。药物重新定位涉及将现有已批准的药物重新用于新的治疗应用,具有成本、节省时间和降低失败风险的优势。我们对现有药物、它们的重新利用潜力及其在 LSD 背景下的临床意义进行了全面分析,强调了突变特异性方法的必要性。我们的综述系统地探讨了药物重新定位作为增强 LSD 疗法的一种手段的前景。研究结果提倡对药物进行战略性重新定位,强调其在加速发现有效治疗方法方面的作用。我们得出结论,药物重新定位是加速 LSD 治疗发现的可行途径,强调需要在疾病特定情况下仔细评估药物的疗效和毒性。
自噬 - 溶酶体途径的损害越来越涉及帕金森氏病(PD)。GBA1突变引起溶酶体储存障碍Gaucher病(GD),是PD的最常见遗传危险因素。GBA1突变已显示会引起自噬 - 溶酶体损伤。 不良细胞成分的自噬降解有缺陷与多种病理有关,包括正常蛋白质稳态的丧失,特别是α-突触核蛋白和先天免疫功能障碍。 在PD和GD中观察到后者。 在这里,我们将讨论自噬和免疫失调之间的机理联系,以及这些病理学在肠道和大脑之间在这些疾病中的沟通中的可能作用。 在神经性GD(NGD)的蝇模型中的最新工作显示肠自噬缺陷导致胃肠道功能障碍和免疫激活。 雷帕霉素治疗部分逆转了自噬阻滞并降低了免疫活性,与生存率增加并改善了运动能力。 肠道微生物组的改变是神经炎症的关键驱动力,研究表明,在NGD蝇中消除了微生物组,而PD的小鼠模型可以改善脑部炎症。 在这些观察结果之后,将溶酶体 - 自噬途径,先天免疫信号传导和微生物组营养不良症讨论为PD和GD中的潜在治疗靶标。 本文是讨论会议问题的一部分,“理解神经变性中的内聚糖网络”。GBA1突变已显示会引起自噬 - 溶酶体损伤。不良细胞成分的自噬降解有缺陷与多种病理有关,包括正常蛋白质稳态的丧失,特别是α-突触核蛋白和先天免疫功能障碍。在PD和GD中观察到后者。在这里,我们将讨论自噬和免疫失调之间的机理联系,以及这些病理学在肠道和大脑之间在这些疾病中的沟通中的可能作用。在神经性GD(NGD)的蝇模型中的最新工作显示肠自噬缺陷导致胃肠道功能障碍和免疫激活。雷帕霉素治疗部分逆转了自噬阻滞并降低了免疫活性,与生存率增加并改善了运动能力。肠道微生物组的改变是神经炎症的关键驱动力,研究表明,在NGD蝇中消除了微生物组,而PD的小鼠模型可以改善脑部炎症。在这些观察结果之后,将溶酶体 - 自噬途径,先天免疫信号传导和微生物组营养不良症讨论为PD和GD中的潜在治疗靶标。本文是讨论会议问题的一部分,“理解神经变性中的内聚糖网络”。
最近的发现表明,溶酶体功能障碍与某些神经退行性疾病有关。因此,对溶酶体功能的调查引起了科学界的极大兴趣。该套件包括溶酶体染色染料,phlys绿色(pH依赖)和溶液深红色(无pH无依赖性)。
SARS-CoV-2 可通过胞吞吸收感染细胞,这一过程可通过抑制溶酶体蛋白酶来靶向。然而,临床上这种方法对羟氯喹口服方案效果不佳,因为脱靶效应伴有显著毒性。我们认为,以细胞器为靶点的方法可以避免毒性,同时增加靶点处的药物浓度。本文我们描述了一种溶酶体靶向、载有甲氟喹的聚(甘油单硬脂酸酯-共-ε-己内酯)纳米颗粒 (MFQ-NP),可通过吸入方式进行肺部输送。在 COVID-19 细胞模型中,甲氟喹是一种比羟氯喹更有效的病毒胞吞抑制剂。 MFQ-NPs 的毒性小于分子甲氟喹,直径为 100-150 纳米,表面带负电荷,有利于通过内吞作用吸收,从而抑制溶酶体蛋白酶。MFQ-NPs 可抑制小鼠 MHV-A59 和人类 OC43 冠状病毒模型系统中的冠状病毒感染,并抑制人类肺上皮模型中的 SARS-CoV-2-WA1 及其 Omicron 变体。这项研究表明,细胞器靶向递送是抑制病毒感染的有效方法。
简单摘要:尽管最近扩大了急性髓样白血病(AML)治疗景观,但抗药性机制和复发性疾病仍然构成严重的障碍,以实现大多数患者的策划。考虑到高室内和肠内异质性,预计破坏性治疗方法将为这种未满足的需求提供临床解决方案。在一项硅药物发现计划中确定了一个新的溶酶体和线粒体靶向化合物的家族,该家族在相关的临床前模型中特异性地消除了白血病和体内的白血病,并通过诱导线粒体损伤和无肢体损伤和脱骨和同时脱落的效果。此外,这些化合物在巨大的癌细胞系中有效,因为它们的作用机理靶向了常见的肿瘤特征。这些化合物具有足够的药理特性,使它们具有有希望的AML和无关肿瘤的候选药物,并支持其进一步的临床发育。
外周血单核细胞 (PBMC) 是从自愿参与本研究的健康捐赠者身上纯化的,这些捐赠者已获得研究内容的知情同意。所有这些过程均按照延世大学机构审查委员会批准的 IRP 程序 (#4-2016-0600) 进行。将血液与 PBS 以 1:1 的比例混合,并堆积在预先放入 ficoll (HISTOPAQUE-1077, Sigma, 10771) 的试管中。在 25°C 下以 400×g 离心 30 分钟,分离白细胞和红细胞,收集并转移到新试管中。用 PBS 冲洗细胞两次,并在室温下以 300×g 离心 10 分钟。重复此过程两次以完全去除血小板。然后,将 PBMC 重新悬浮在 RPMI 中
成功治疗癌症的一个主要混杂问题是抗治疗剂和方案的肿瘤细胞群体存在。虽然巨大的努力一直在理解对每种传统和有针对性治疗的耐药性的生化机制,但对问题的更广泛的方法可能从认识到现有的抗癌剂几乎通过细胞凋亡几乎完全引起其细胞毒性作用的认识而出现。考虑到癌细胞颠覆凋亡死亡的众多机制,一种有吸引力的替代方法将利用编程的坏死机制来促成诱导细胞凋亡剂的侧键治疗性。溶酶体细胞死亡(LCD)是一种编程的坏死细胞死亡机制,在溶酶体的极限膜的妥协中参与,这一过程称为溶酶体膜通透性(LMP)。在LMP上将溶酶体成分释放到细胞质中,触发生化级联反应,导致质膜破裂和坏死细胞死亡。有趣的是,细胞转化的过程似乎使肿瘤细胞的溶酶体膜比非转化细胞更脆弱,从而为药物发育提供了潜在的治疗窗口。在这里,我们概述了LMP和LCD的概念,并讨论了代理参与这些过程的策略。重要的是,现有的阳离子两亲性药物的潜力存在,例如抗抑郁药,抗生素,抗心律失常和利尿剂,以重新使用,以使LCD参与治疗耐药性肿瘤细胞种群。
