摘要:对化疗药物和靶向药物的耐药性是成功治疗癌症的主要问题之一。已发现各种机制导致耐药性。其中一种机制是溶酶体介导的耐药性。溶酶体已被证明可以捕获某些疏水性弱碱性化疗药物以及一些酪氨酸激酶抑制剂,从而将其隔离在细胞内靶位之外。在大多数情况下,溶酶体隔离之后,其内容物会通过胞吐作用从细胞中释放出来。抗癌药物在溶酶体中的积累主要是由离子捕获引起的,但也有描述某些药物主动转运到溶酶体的情况。溶酶体低 pH 值是离子捕获所必需的,这是通过 V-ATPase 的活性实现的。在实验条件下,溶酶体趋化剂和 V-ATPase 抑制剂可以成功抑制这种隔离。临床试验仅对溶酶体药物氯喹进行了试验,结果不太成功。本综述的目的是概述溶酶体隔离和酸化酶的表达(癌细胞化学抗性的尚不为人所知的机制)以及如何克服这种形式的抗性的可能性。
摘要背景免疫检查点阻断抗体的出现证明有效调动 T 细胞反应可导致转移性癌症的肿瘤消退,尽管这些反应是异质性的并且仅限于某些组织类型的癌症。为了增强这些反应,人们重新重视开发有效的癌症特异性疫苗,以刺激和引导 T 细胞免疫到重要的肿瘤靶点,例如在约 20% 的乳腺癌 (BC) 中表达的致癌基因人表皮生长因子受体 2 (HER2)。方法在我们的研究中,我们探索了通过使用溶酶体相关膜蛋白 1 (LAMP) 结构域来使用替代抗原运输来增强疫苗对 HER2 和其他模型抗原的功效,无论是在体外还是在体内研究中。结果我们发现在质粒疫苗中加入这个结构域可以有效地将抗原运输到内溶酶体区室,从而增强主要组织相容性复合体 (MHC) I 类和 II 类呈递。此外,这还增强了抗原特异性 CD4+ 和 CD8+ T 细胞的扩增/活化,并导致抗原特异性多功能 CD8+ T 细胞水平升高。值得注意的是,在转移性 HER2+ BC 的内源性模型中,接种 HER2-LAMP 疫苗的已建立肿瘤小鼠中约 30% 的肿瘤消退,而接种 HER2-WT 疫苗的小鼠中这一比例为 0%。这种治疗益处与活化 CD4+ 和 CD8+ T 细胞的肿瘤浸润增强有关。结论这些数据证明了使用基于 LAMP 的溶酶体运输作为增强多功能抗原特异性 T 细胞产生的手段的潜力,从而改善使用癌症抗原疫苗的抗肿瘤治疗反应。
溶酶体贮积症 (LSD) 是一类由 70 种代谢紊乱组成的疾病,其特征是溶酶体蛋白突变导致贮积物积聚、多器官病变(通常涉及神经退化)以及大量患者的早期死亡。除了需要更有效的治疗方法外,还存在着对疾病病因的进一步了解,这可能揭示新的途径和药物靶点。在过去的几十年里,随着诱变技术的进步显著提高了哺乳动物和非哺乳动物系统中模型生成的效率,模型生物的研究促进了对疾病相关途径的了解。在本综述中,我们重点介绍了 LSD 的非哺乳动物模型,特别关注斑马鱼,这是一种脊椎动物模型生物,与哺乳动物具有显著的遗传和代谢相似性,同时还具有独特的优势,例如光学透明性和适合高通量应用。我们研究已发表的斑马鱼 LSD 模型及其报告的表型,探讨特定生物体的优势和局限性,并讨论可能提供潜在解决方案的最新技术创新。
1983 年至 2019 年间,FDA 授予了 124 项孤儿药资格,用于治疗 28 种溶酶体贮积症。孤儿药资格主要针对戈谢病(N = 16)、庞贝病(N = 16)、法布里病(N = 10)、MPS II(N = 10)、MPS I(N = 9)和 MPS IIIA(N = 9),包括酶替代疗法、基因疗法、小分子等。23 种孤儿药获批用于治疗 11 种 LSD。戈谢病(N = 6)、胱氨酸病(N = 5)、庞贝病(N = 3)和法布里病(N = 2)获得多项批准,CLN2、LAL-D、MPS I、II、IVA、VI 和 VII 各获得一项批准。这意味着自 2013 年以来,批准的药物增加了 9 种,可治疗的 LSD 增加了 4 种(CLN2、MPS VII、LAL-D 和 MPS IVA)。孤儿药指定和 FDA 批准之间的平均时间为 89.7 SD 55.00(范围 8-203,N = 23)个月。
此预印本的版权所有者于 2020 年 1 月 14 日发布此版本。;https://doi.org/10.1101/2020.01.05.20016568 doi: medRxiv preprint
此预印本的版权所有者于 2020 年 1 月 10 日发布此版本。;https://doi.org/10.1101/2020.01.05.20016568 doi: medRxiv preprint
在上一篇论文(Starkey&Barrett,1976a)中,描述了人脾脏对两个中性蛋白酶的纯化。这些酶之一是针对弹性蛋白的活性,因此被认为是一种弹性酶。本文中描述的证据表明,这是人类嗜中性粒细胞的溶酶体(Azurophil)颗粒的合并的弹性蛋白酶(Dewald等,1975)。There is much interest in the possibility that this enzyme may play a part in such important physio- logical processes as the digestion of bacteria by phagocytes (Janoff & Blondin, 1973), the degradation of elastin in the arterial wall and emphysematous lung, the degradation of kidney basement membrane in glomerulonephritis, and the destruction of the articular类风湿关节炎中的软骨(Janoff,1972a)。在本文中,我们描述了溶酶体弹性酶的某些特性,并将其与猪泛菌的特征弹性酶进行比较。
