摘要:在本文中,我们证明了2D钙钛矿(PEA)2 PBI 4(PEPI)中的激子/激子an灭是太阳能电池和光发光二极管中的主要损失机制,可以通过抗激元与腔之间的耦合来控制。我们使用时间分辨的瞬态吸收光谱研究激发状态动力学,并表明可以通过通过PEPI层厚度改变腔宽度,从而通过强耦合方式调节系统。非常明显的是,即使腔质量因子仍然很差,也会出现强大的耦合。我们证明,观察到的类似衍生物样的瞬态吸收光谱可以使用时间依赖性的RABI分裂来对其进行建模,而Rabi分裂是由于激子的瞬时漂白而发生的。当PEPI强烈耦合到腔体时,激子/激子歼灭速率被1个数量级抑制。一个依赖北极子部分光子特征的模型将结果解释为失谐的函数。
过渡金属二甲化物(TMDS)的扭曲双层揭示了丰富的激子景观,包括混合激子和空间捕获的Moiré激子,占主导地位的材料光学响应。最近的研究表明,在低扭转角度方面,晶格经历了显着的松弛,以最大程度地减少局部堆叠能量。在这里,出现了低能堆叠配置的大域,通过应变使晶格变形,从而影响电子带结构。然而,到目前为止,原子重建对激子能量景观和光学特性的直接影响尚未得到充分了解。在这里,我们采用了微观和材料特异性方法,并预测了重建的晶格中Moiré激子的潜在深度发生了显着变化,并且自然堆叠的TMD TMD同质同层中发生了最大的变化。与刚性晶格相比,我们显示了多个频段的外观,并且捕获位点位置的显着变化。最重要的是,我们预测WSE 2同类体的光学吸收中出现了多发结构 - 与主导刚性晶格的单个峰相比。此发现可以被利用为在天然堆积的扭曲同性恋者中Moiré激子光谱中原子重建的明确特征。
摘要:二维材料可访问光子学的最终物理限制,具有吸引人的超级合理光学组件(例如波格和调节剂)。特别是在单层半导管中,强烈的激子共振导致介电常数从正极到均匀的值急剧振荡。这种极端的光学响应使表面激子 - 磨牙能够引导可见光与原子薄层结合。然而,这种超薄波格 - 支持具有低配置的横向电(TE)模式,并且具有短传播的横向磁性(TM)模式。在这里,我们提出,包括单层WS 2和六角形硝酸硼(HBN)的现实分号 - 导管 - 隔离器 - 隔离器超晶格可以提高TE和TM模式的性质。与单个单层相比,分隔两个单层的1 nm HBN间隔物的异质结构可增强TE模式的配置,从1.2到0.5μm左右,而TM模式的平面外扩展则增加了25至50 Nm。我们提出了两个简单的添加性规则,用于在超薄纤维近似中有效的模式结构,用于异质结构,间隔厚度增加。堆栈 -
摘要:单层过渡金属二硫属化物 (TMD) 为研究二维 (2D) 极限下的激子态提供了平台。TMD 中激子的固有属性,例如光致发光量子产率、电荷态甚至结合能,可以通过静电门控、选择性载流子掺杂或基底电介质工程进行有效控制。本文,为了实现激子态的非挥发性电可调性,从而实现 TMD 的光学属性,我们展示了一种具有单层 MoSe 2 和超薄 CuInP 2 S 6 (CIPS) 的二维铁电异质结构。在异质结构中,CIPS 的电极化导致单层 MoSe 2 中出现连续、全局和大的电子调制。利用 CIPS 的饱和铁电极化,可以在单个器件中实现电子掺杂或空穴掺杂的 MoSe 2。异质结构中载流子密度可调性高达 5 × 10 12 cm − 2 。还表征了这些器件长达 3 个月的非挥发性行为。我们的研究结果为低功耗和长期可调的光电器件提供了一种新的实用策略。关键词:激子、MoSe 2 、CuInP 2 S 6 、铁电性、2D 铁电异质结构■引言
抽象的分层混合植物(LPK)作为光伏细胞,LED和激光器的稳定性提高,有望作为光伏细胞,LED和激光的3D金属卤化物钙钛矿的替代品或添加剂。然而,这些材料中的高激子结合能意味着激子是许多设备运行条件下的大多数物种。尽管结合LPK的设备的效率一直在增加,但对于这些材料中的激子和自由电荷载体的相互作用仍然未知,这对于理解光电特性如何决定设备的效率是至关重要的信息。在这项工作中,我们采用光泵 / THZ探针光谱(OPTP)和可见的瞬态吸收光谱(TAS)来分析苯基甲基铵铅碘化物(PEA)2 PBI 4的光扣性特性和电荷载体动力学。通过结合这些技术,我们能够从激发子和自由电荷载体中解散贡献。我们观察到在约400 fs的时间尺度上快速冷却自由电荷载体和激子形成,然后在速率常数k 2〜10 9 cm 3 s-1的时间尺度上进行较慢的双分子重组。激子通过两个单分子过程重组,其寿命为t 1〜11 ps和t 2〜83 ps。此外,我们检测出激子的特征 - 瞬态吸收动力学痕迹中的声子耦合。这些发现提供了有关自由电荷接入器和激子之间相互作用的新见解,以及可能进一步了解LPK中的电荷运营商动力学的可能机制。
摘要 里德堡激子(凝聚态系统中里德堡原子的类似物)是具有大玻尔半径的高度激发的束缚电子空穴态。它们之间的相互作用以及激子与光的耦合可能导致强光学非线性,可用于传感和量子信息处理。在这里,我们通过里德堡阻塞现象以及在 Cu2O 填充微谐振器中形成极化的激子和光子的杂化实现了强有效光子 - 光子相互作用(类克尔光学非线性)。在脉冲共振激发下,由于光子-激子耦合随着激子密度的增加而减少,极化子共振频率被重新正化。理论分析表明,里德堡阻塞在实验观察到的极化子非线性系数缩放中起着重要作用,因为对于高达 n = 7 的主量子数,∝ n 4.4 ± 1.8。首次在极化子系统中研究如此高的主量子数对于实现高里德堡光学非线性至关重要,这为量子光学应用和固态系统中强关联光子(极化子)态的基础研究铺平了道路。
Los Alamos国家实验室是一项平权行动/均等机会雇主,由Triad National Security,LLC经营,为美国能源部国家核安全管理局根据合同89233218CNA000001运营。通过批准本文,出版商认识到,美国政府保留了不判有限定的免版税许可,以出版或复制已发表的此捐款形式,或者允许其他人出于美国政府的目的。洛斯阿拉莫斯国家实验室要求出版商根据美国能源部主持的工作确定这篇文章。Los Alamos国家实验室强烈支持学术自由和研究人员发表权;但是,作为一个机构,实验室并未认可出版物的观点或保证其技术正确性。
摘要:激子和光子之间的强相互作用会导致激子 - 两极子的形成,与其成分相比,具有完全不同的特性。通过将材料合并到电磁场紧密限制的光腔中,产生了极化子。在过去的几年中,偏光态的放松已被证明可以实现一种新型的能量转移事件,该事件的长度比典型的fo rster rster半径大大大。但是,这种能量转移的重要性取决于短寿命的极化状态有效衰减到可以执行光化学过程的分子局部状态(例如电荷转移或三重态状态)的能力。在这里,我们在强耦合方面定量地研究了极性子与红细胞B的三胞胎状态之间的相互作用。我们使用速率方程模型分析了实验数据,主要采用角度分辨反射率和激发测量值。我们表明,从极化子到三重态的跨系统交叉的速率取决于激发极性状态的能量比对。此外,可以证明,在强耦合方案中,可以大大提高间间穿越速率,直到接近北极星辐射衰减的速率。■引言激子 - 果龙是由于激子与电磁场之间的强烈相互作用而产生的。1,2鉴于从极化元素到分子局部态在分子光物理学/化学和有机电子中提供的机会,我们希望对从这项研究获得的这种相互作用的定量理解将有助于开发Polariton Empowered设备。
激子的基本特性取决于库仑结合的电子和孔的自旋,山谷,能量和空间波形。在范德华材料中,这些属性可以通过层堆叠配置进行广泛设计,以创建具有静态平面外电偶极子的高度可调的层间激子,以牺牲振动性内置偶极偶极子的强度,负责轻度降低光线的振动。在这里我们表明,双层和三层2H-Mose 2晶体中的层间激子与地面(1 s)和激发态(2 s)的电端驱动耦合(2 s)。我们证明,这些独特的激子物种的杂种状态可提供强大的振荡力强度,大型永久性偶极子(高达0.73±0.01 ENM),高能量可调性(高达〜200 meV)以及对旋转和山谷特征的完全控制,因此激子G型可以在较大的范围内操纵ICKITON G-ICTOR。此外,我们观察到双层和三层激发态(2 s)互层激元及其与内部激子态(1 s和2 s)的耦合。我们的结果与具有自旋(层)选择性和超越标准密度功能理论计算的耦合振荡器模型非常吻合,促进了多层2H-MOSE 2作为一个高度可调的平台,可探索与强光相互作用相互作用的Exciton-Exciton相互作用。
摘要:单壁碳纳米管 (SWCNT) 的光物理因其在光收集和光电子学中的潜在应用而受到深入研究。SWCNT 的激发态形成强结合的电子-空穴对,激子,其中只有单重态激子参与应用相关的光学跃迁。长寿命的自旋三重态阻碍了应用,但它们成为量子信息存储的候选者。因此,非常需要了解三重态激子的能量结构,特别是 SWCNT 手性依赖的方式。我们使用专用光谱仪报告了对几种 SWCNT 手性的三重态复合发光(即磷光)的观察结果。这得出了单重态-三重态间隙与 SWCNT 直径的关系,并遵循基于量子约束效应的预测。在高微波功率(高达 10 W)辐射下的饱和度可以确定三重态的自旋弛豫时间。我们的研究敏感地区分了最低光学活性状态是从同一纳米管上的激发态填充的,还是通过来自相邻纳米管的福斯特激子能量转移填充的。关键词:碳纳米管、光学检测磁共振、弛豫时间、量子约束、分子标尺、福斯特激子转移 U