材料可以理解为parter骨钙钛矿AMX 3不同晶体学方向的切口(a =小有机或无机阳离子,例如CS +或CH 3 NH 3 +; m = M = divalent Metal,如Pb 2 +或Sn 2 +或Sn 2 +; x +; x = cl,br或i)。这是通过使用较大的有机阳离子(例如烷基烷基或芳基铵离子)来实现的。[2]所产生的2D结构可以被视为一个被两个有机屏障的无机层的理想量子孔。可以通过改变无机层的厚度[3]来调节此类量子井的光学性质,并结合材料的无机和有机合并的自由度,提供了丰富的化学,结构性,结构性的可爱性。[4]这些材料可以故意选择构建块,以设计2D材料的设计。已建立的2D材料为基础研究和应用提供了一个极好的平台,包括诸如极性物理现象,[5]超导性,[6]和电荷密度波[7]以及水的纯化,[8]光发射diodes,[9] Photovoltaics,[9] PhotoVoltaics,[10]和Sensing and Sensing and Sensing。[11]这个宽范围内在地渗透了分层钙钛矿和2D材料的组合将提供结合许多特性的高级多功能结构。
作者的完整清单:Yuhan的Guan; Zhang Zhang的Zhejiang师范大学,XU;加利福尼亚州立大学Northridge,Guangjun的物理和天文学Nan; Zhejiang普通大学物理学系
空间结构光场应用于半导体量子点会产生与均匀光束根本不同的吸收光谱。在本文中,我们使用圆柱多极展开式对不同光束的光谱进行了详细的理论讨论。对于量子点的描述,我们采用了基于包络函数近似的模型,包括库仑相互作用和价带混合。单个空间结构光束和状态混合的结合使得量子点中的所有激子态都变为光可寻址。此外,我们证明可以定制光束,以便选择性地激发单个状态,而无需光谱分离。利用这种选择性,我们提出了一种测量量子点本征态激子波函数的方法。该测量超越了电子密度测量,揭示了激子波函数的空间相位信息。这种相位信息的提取是从偏振敏感测量中已知的;然而,这里除了二维偏振自由度之外,还可以通过光束轮廓获得无限大的空间自由度。
摘要 相干激子的长距离快速传输对于高速激子电路和量子计算应用的开发具有重要意义。然而,由于材料中原生状态下的激子传输存在较大的非均匀展宽和失相效应,因此大多数相干激子仅在某些低维半导体与腔耦合时才能观察到。在这里,通过将相干激子限制在二维量子极限,我们首次在原子级厚度的二维 (2D) 有机半导体中观察到分子聚集引起的相干态间激子的“超传输”,测得的高有效激子扩散系数在室温下约为 346.9 cm 2 /s。这个值比其他有机分子聚集体和低维无机材料的值高出一个到几个数量级。单层并五苯样品是一种非常干净的二维量子系统(厚度约 1.2 纳米),具有高结晶性(J 型聚集)和最小的界面态,在未与任何光学腔耦合的情况下,表现出来自 Frenkel 激子的超辐射发射,这通过温度相关的光致发光 (PL) 发射、高度增强的辐射衰减率、显著缩小的 PL 峰宽和强方向性平面内发射得到了实验证实。观察到单层并五苯样品中的相干性在 ~135 个分子上非局域化,这明显大于在其他有机薄膜中观察到的值(几个分子)。此外,单层并五苯样品中激子的超传输表现出高度的各向异性行为。我们的研究结果为未来高速激子电路、快速 OLED 和其他光电器件的开发铺平了道路。
摘要 相干激子的长距离快速传输对于高速激子电路和量子计算应用的开发具有重要意义。然而,由于材料中原生状态下的激子传输存在较大的非均匀展宽和失相效应,因此大多数相干激子仅在某些低维半导体与腔耦合时才能观察到。在这里,通过将相干激子限制在二维量子极限,我们首次在原子级厚度的二维 (2D) 有机半导体中观察到分子聚集引起的相干态间激子的“超传输”,测得的高有效激子扩散系数在室温下约为 346.9 cm 2 /s。这个值比其他有机分子聚集体和低维无机材料的值高出一个到几个数量级。单层并五苯样品是一种非常干净的二维量子系统(厚度约 1.2 纳米),具有高结晶性(J 型聚集)和最小的界面态,在未与任何光学腔耦合的情况下,表现出来自 Frenkel 激子的超辐射发射,这通过温度相关的光致发光 (PL) 发射、高度增强的辐射衰减率、显著缩小的 PL 峰宽和强方向性平面内发射得到了实验证实。观察到单层并五苯样品中的相干性在 ~135 个分子上非局域化,这明显大于在其他有机薄膜中观察到的值(几个分子)。此外,单层并五苯样品中激子的超传输表现出高度的各向异性行为。我们的研究结果为未来高速激子电路、快速 OLED 和其他光电器件的开发铺平了道路。
太赫兹 (THz) 时域光谱有助于深入了解半导体异质结构中的电子动力学。高场 THz 光谱探测 GaAs 量子阱 (QW) 系统的激子非线性响应,并能够在时域中测量其相干动力学。因此,THz 光谱可以让人们探索多体相互作用的基本特性以及半导体纳米器件技术的潜力。这项工作使用计算方法分析了半导体微腔中的光物质相互作用。当 QW 微腔中的激子与腔光子强耦合时,会形成一种称为激子极化子的新准粒子。本论文表明,具有光学和 THz 激发的经典耦合谐振子可用作模型来模拟激子极化子动力学及其量子相干现象。通过采用激子模式的时间相关衰减和改变光脉冲和 THz 脉冲之间的延迟,演示了激子-光子耦合系统的时间演化。由于强光物质杂化,在频谱中观察到正常模式分裂。最后,将本工作计算出的激子-极化子振荡与使用半导体布洛赫方程获得的参考计算结果进行了比较。
摘要:照明是人类的基本需求,因此寻找具有高效率和宽带白光发射的照明源十分必要。零维 (0D) 金属卤化物化合物是有希望的候选化合物,一些无铅含锑化合物表现出双峰白光发射。然而,它们的起源仍不清楚。为了解决这个问题,我们设计并制备了一类新的 0D 金属卤化物化合物,由 [M(18-冠-6)] + (M = NH 4 , Rb) 和 SbX 5 2 − (X = Cl, Br) 单元组成。我们发现 0D 化合物的发射曲线与 18-冠-6 醚的发射曲线不同且分离良好,不包括几篇报道中提出的配体内电荷转移机制。飞秒瞬态吸收数据和光物理性质的成分依赖性表明,双峰白光发射是由与金属卤化物耦合的自俘获激子的单重态和三重态(1 STE 和 3 STE)引起的。这些 0D 化合物也是非常高效的发射器,白光光致发光量子产率高达 54%。■ 简介照明是人类的基本需求,占全球电力消耗的约 20%。1
摘要:具有原子级精确宽度和边缘结构的石墨烯纳米带 (GNR) 具有半导体特性和高载流子迁移率,是一类很有前途的光电子纳米材料。了解 GNR 中载流子产生的基本静态光学特性和超快动力学对于光电应用至关重要。结合太赫兹光谱和理论计算,我们报告了液相分散 GNR 中强激子效应,结合能高达 ∼ 700 meV,宽度为 1.7 nm,光学带隙为 ∼ 1.6 eV,说明了光生电子和空穴之间固有的强库仑相互作用。通过跟踪激子动力学,我们发现 GNR 中激子的超快形成具有超过 100 ps 的长寿命。我们的研究结果不仅揭示了 GNR 中激子的基本方面(强结合能和超快激子形成等),而且还突出了 GNR 在光电器件中的良好性能。关键词:石墨烯纳米带、激子、激子形成、激子结合能、太赫兹光谱 ■ 简介
完整作者列表: Oliver, Sean;乔治梅森大学,物理和天文系;乔治梅森大学,量子材料中心 Fox, Joshua;宾夕法尼亚州立大学,电子材料与设备系,应用研究实验室;宾夕法尼亚州立大学,二维晶体联盟,材料研究所 Hashemi, Arsalan;阿尔托大学,应用物理系 Singh, Akshay;麻省理工学院,材料科学与工程系;印度科学研究所,物理系 Cavalero, Randal;宾夕法尼亚州立大学,电子材料与设备系,应用研究实验室;宾夕法尼亚州立大学,二维晶体联盟,材料研究所 Yee, Sam;乔治梅森大学,物理和天文系;乔治梅森大学,量子材料中心 Snyder, David;宾夕法尼亚州立大学,电子材料与设备系,应用研究实验室;宾夕法尼亚州立大学,二维晶体联盟,材料研究所 Jaramillo, Rafael;麻省理工学院,材料科学与工程系 Komsa, Hannu-Pekka;Aalto-yliopisto,应用物理系;奥卢大学,微电子研究部 Vora, Patrick;乔治梅森大学,物理与天文系;乔治梅森大学,量子材料中心
氧化亚铜 (Cu 2 O) 是一种具有大激子结合能的半导体,在光伏和太阳能水分解等应用中具有重要的技术重要性。它还是一种适用于量子光学的优越材料体系,能够观察到一些有趣的现象,例如里德堡激子作为高激发原子态的固态类似物。之前与激子特性相关的实验主要集中在天然块体晶体上,因为生长高质量合成样品存在很大困难。本文介绍了具有优异光学材料质量和极低点缺陷水平的 Cu 2 O 微晶体的生长。本文采用了一种可扩展的热氧化工艺,非常适合在硅上集成,片上波导耦合的 Cu 2 O 微晶体就证明了这一点。此外,还展示了位点控制的 Cu 2 O 微结构中的里德堡激子,这与量子光子学中的应用有关。这项工作为 Cu 2 O 在光电子学中的广泛应用以及新型器件技术的开发铺平了道路。