摘要:有效的纳米光子设备对于在量子网络,光学信息处理,传感和非线性光学方面的应用至关重要。广泛的研究工作重点是将二维(2D)材料整合到光子结构中,但是这种整合通常受大小和材料质量的限制。在这里,我们使用六角硼(HBN),这是一种封装原子薄材料的基准选择,作为波导层,同时提高了嵌入式膜的光学质量。与光子逆设计结合使用时,它将成为一个完整的纳米光子平台,可与光学活跃的2D材料接口。光栅耦合器和低损耗波导提供了光学接口和路由,可调腔提供了大型激子 - 光子耦合,通过purcell增强型与过渡金属二甲化合物(TMD)单层相结合,并通过purcell增强功能,并且可以通过Metasurfaces有效地检测TMD Dark Dark Ickitons。这项工作为经典和量子非线性光学器件的高级2D材料纳米光子结构铺平了道路。关键字:2D材料,纳米光子学,逆设计,集成光子学,光腔
在支持所谓的表面晶格共振(SLR)的光学元面积中。5,10后者提供了在大面积上易于制造的优势,并且可能在集成光子学中使用。与原子的气体(BEC的原始平台)相反,11个激子北极星的寿命很短。这些短寿命限制了基态的EP密度的堆积,从而导致凝结阈值增加。因此,EP凝结需要强大的激光系统来产生足够高的激子并达到阈值,这使得Polariton激光不适合大多数应用。在本文中,我们通过显着降低由硅(SI)跨表面形成的全电腔中的损耗来证明较低的阈值EP构度,从而增加了EP寿命。最近的努力成功地通过取代支持MIE-SLR的低损坏介电元表面的等离子介电元表面来减少凝结阈值。12由于SLR的高Q因子(400 - 700),部分原因是材料损失的减少,凝结阈值显着降低。在这里,我们通过
磁性顺序。[7–20]铁磁层寄主非常相关的电子状态,这些状态会产生各种带状结构,包括金属,半导体或绝缘特性。[21–23]中,三锤铬[24-40](CRX 3)显示出由Cr D-Shell Electrons驱动的独特电子特性,这些特性同时促进了Cr-Cr – Cr Ferromagnetic耦合,宽带隙,宽带隙,宽大的界限和强度限制了confitoctonic状态。因此,CRX 3晶体的磁化状态与它们的磁光特性密切相关。fer- romagnetism诱导的滞后光学信号。These results unveiled ferromagnetic coupling between the Cr spins within a monolayer plane with easy axis magnetization ori- ented out-of-plane for CrBr 3 and CrI 3 and in-plane for CrCl 3 , thickness-dependent interplane ferromagnetic and antiferro- magnetic coupling in CrI 3 multilayers as well as light-mediated ferromagnetic response in doped transition metal二分法。[43–45]不幸的是,这些光学方法仅用作磁化探针,而磁性态和光激发之间的相互作用仍未开发。
1 E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA 2 SLAC National Accelerator Laboratory, Menlo Park, CA 94025 3 Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan 4 Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki,日本Tsukuba 305-0044†这些作者同样为这项工作做出了贡献。*电子邮件:leoyu@stanford.edu **电子邮件:tony.heinz@stanford.edu van-der-waals(vdw)材料已经通过层组装开辟了许多通过层组装发现的途径,因为表现出电气可调节的亮度亮度,浓度和exciten contensect,cortensect,contensation and Exciten cortensation and ExciteN,contensation and ExciteNtion and ExciteNtion and ExciteN,并表现出。将层间激子扩展到更多的VDW层,因此提出了有关激子内部连贯性以及在多个接口处Moiré超级峰值之间的耦合的基本问题。在这里,通过组装成角度对准的WSE 2 /WS 2 /WSE 2杂体我们证明了四极激体的出现。我们通过从两个外层之间的相干孔隧道(在外部电场下的可调静态偶极矩)之间的相干孔隧穿来证实了激子的四极性性质,并降低了激子 - 外激体相互作用。在较高的激子密度下,我们还看到了相反对齐的偶极激子的相位标志,这与被诱人的偶性相互作用驱动的交错偶极相一致。我们的演示为发现三个VDW层及以后的新兴激子订购铺平了道路。
摘要 相干激子的长距离快速传输对于高速激子电路和量子计算应用的开发具有重要意义。然而,由于材料中原生状态下的激子传输存在较大的非均匀展宽和失相效应,因此大多数相干激子仅在某些低维半导体与腔耦合时才能观察到。在这里,通过将相干激子限制在二维量子极限,我们首次在原子级厚度的二维 (2D) 有机半导体中观察到分子聚集引起的相干态间激子的“超传输”,测得的高有效激子扩散系数在室温下约为 346.9 cm 2 /s。这个值比其他有机分子聚集体和低维无机材料的值高出一个到几个数量级。单层并五苯样品是一种非常干净的二维量子系统(厚度约 1.2 纳米),具有高结晶性(J 型聚集)和最小的界面态,在未与任何光学腔耦合的情况下,表现出来自 Frenkel 激子的超辐射发射,这通过温度相关的光致发光 (PL) 发射、高度增强的辐射衰减率、显著缩小的 PL 峰宽和强方向性平面内发射得到了实验证实。观察到单层并五苯样品中的相干性在 ~135 个分子上非局域化,这明显大于在其他有机薄膜中观察到的值(几个分子)。此外,单层并五苯样品中激子的超传输表现出高度的各向异性行为。我们的研究结果为未来高速激子电路、快速 OLED 和其他光电器件的开发铺平了道路。
摘要 相干激子的长距离快速传输对于高速激子电路和量子计算应用的开发具有重要意义。然而,由于材料中原生状态下的激子传输存在较大的非均匀展宽和失相效应,因此大多数相干激子仅在某些低维半导体与腔耦合时才能观察到。在这里,通过将相干激子限制在二维量子极限,我们首次在原子级厚度的二维 (2D) 有机半导体中观察到分子聚集引起的相干态间激子的“超传输”,测得的高有效激子扩散系数在室温下约为 346.9 cm 2 /s。这个值比其他有机分子聚集体和低维无机材料的值高出一个到几个数量级。单层并五苯样品是一种非常干净的二维量子系统(厚度约 1.2 纳米),具有高结晶性(J 型聚集)和最小的界面态,在未与任何光学腔耦合的情况下,表现出来自 Frenkel 激子的超辐射发射,这通过温度相关的光致发光 (PL) 发射、高度增强的辐射衰减率、显著缩小的 PL 峰宽和强方向性平面内发射得到了实验证实。观察到单层并五苯样品中的相干性在 ~135 个分子上非局域化,这明显大于在其他有机薄膜中观察到的值(几个分子)。此外,单层并五苯样品中激子的超传输表现出高度的各向异性行为。我们的研究结果为未来高速激子电路、快速 OLED 和其他光电器件的开发铺平了道路。
太赫兹 (THz) 时域光谱有助于深入了解半导体异质结构中的电子动力学。高场 THz 光谱探测 GaAs 量子阱 (QW) 系统的激子非线性响应,并能够在时域中测量其相干动力学。因此,THz 光谱可以让人们探索多体相互作用的基本特性以及半导体纳米器件技术的潜力。这项工作使用计算方法分析了半导体微腔中的光物质相互作用。当 QW 微腔中的激子与腔光子强耦合时,会形成一种称为激子极化子的新准粒子。本论文表明,具有光学和 THz 激发的经典耦合谐振子可用作模型来模拟激子极化子动力学及其量子相干现象。通过采用激子模式的时间相关衰减和改变光脉冲和 THz 脉冲之间的延迟,演示了激子-光子耦合系统的时间演化。由于强光物质杂化,在频谱中观察到正常模式分裂。最后,将本工作计算出的激子-极化子振荡与使用半导体布洛赫方程获得的参考计算结果进行了比较。
1 Laboratory of Study of Microstructures, Onera-CNRS, University Paris-Saclay, BP 72, 92322 CHECTILLON CEDEX, France 2 University Paris-Saclay, UVSQ, CNRS, GEMAC, 78000, Versailles, France 3 Tim Taylor Department of Chemical Engineering, Kansas State University Manhattan, KS 66506, USA 4 Laboratory of Multimate and Interfaces, UMR CNRS 5615, Univ Lyon University Claude Bernard Lyon 1, F-69622 Villeurbanne, France 5 Laboratory Mateis, UMR CNRS 5510, Univ Lyon, INSA Lyon, F-69621 Villeurbanne, France 6 Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044,日本7电子和光学材料研究中心,国家材料科学研究所,1-1 Namiki,Tsukuba,Tsukuba 305-0044,日本(日期:
B. 激发导致零级激子态,每个点由两个空穴态(h1 和 h2,蓝色条)和一个电子态(e,红色条)组成。可以构建 8 个激子态,4 个局部激子,即 h1eA(顶行),其中空穴-电子对位于同一点上(激发用直线表示)和 4 个电荷转移,即 h1A-eB,(CT 态,底行),其中空穴和电子位于不同的点上(激发用曲线表示)。C. 异质结的本征激子态
在层状材料中,例如 MoS 2 等过渡金属二硫属化物 (TMDC),[ 24–27 ] 或其他可剥离材料,如 GaSe,[ 28 ] 激子在室温下主导其光学特性,这证明了它们具有很强的结合能。在磷同素异形体(如 BP)中观察到了激子物种,具有近红外发射。[ 29,30 ] 相反,VP 作为一种替代品出现,具有可见光范围的光致发光 (PL) 发射和更高的热稳定性,[ 17,21 ] 但对其激子效应的研究仍处于起步阶段。在本研究中,我们使用原子力显微镜 (AFM)、拉曼和 PL 光谱在一系列温度和波长范围内研究了 SiO 2 /Si 衬底上剥离的 VP 的光降解、热效应和激子发射。我们的研究结果表明,VP 的降解速度受光的波长和曝光时间的强烈影响。发现在 VP 的带隙之上的光激发会由于与活性氧 (ROS) 的相互作用而导致更快的降解。PL 光谱显示激子数量逐渐下降,表明激子的寿命缩短以及激子的形成和稳定性发生变化,从而影响 VP 的量子效率。功率依赖性 μ -PL 测量表明中性激子和三子的强度线性增加,而它们的峰值能量之间的能量差随着功率的增加而减小,这表明激子能隙发生了变化。温度依赖性 PL 显示出可见的 X 0 和 T 峰,在高温下 X 0 发射的光谱权重更高,这意味着 VP 晶体中 T 发射的热稳定性降低。采用温度依赖性拉曼光谱法,在不同温度下确定了九种拉曼模式的峰位,最高可达