简介。有机半导体的开发。有机和无机光电技术的比较。有机光子学和电子市场开发。立陶宛有机光电技术的开发。有机光电学中使用的材料。设备的典型多层结构典型的有机半导体。主要的技术:小分子,聚合物。多功能材料。分子玻璃。电荷分离材料。发射器:单线,三重态。分子复合物。非线性光学分子。其他材料。有机层。纯化材料的方法。真空中的蒸发。从解决方案中铸造。获得不溶性层。合金。通过真空蒸发和铸造方法获得多层结构。Langmuir-Blogett技术。自组织层。结构层。寿命和有机层降解的问题。封装。有机共轭分子的特性。分子轨道,轨道杂交。分子电子和振动状态。势能共配置图。分子中的激发过程。环境影响,分子复合物,激发转移过程。fiorster,敏捷能量传递。有机材料和聚合物中激发激发的基本知识。缺陷状态。Frenkel的激子。多元中激子的状态。激子 - 振动相互作用。电荷转移激子。激子北极星和极化。激子运输和放松过程。有机层和晶体中的电荷载体状态。光学和绝热带隙。载体带,载体状态密度。聚合物状态。电荷转移现象。载体迁移率,其温度和电场依赖性。
摘要:在原子上薄的半导体中,CRSBR脱颖而出,因为它的散装和单层形式在磁性环境中均构成紧密结合的准二维激子。尽管对固态研究至关重要,但激子的寿命仍然未知。虽然Terahertz极化探测可以直接跟踪所有激子,而与带间选择规则无关,但相应的大型远场灶基本上超过了横向样品尺寸。在这里,我们将Terahertz极化光谱与近场显微镜结合在一起,以揭示CRSBR单层中的磁磁复发剂的飞秒衰减,该crsbr的单层比散装寿命短30倍。我们在散装CRSBR中揭示了结合和未结合的电子 - 孔对的低能指纹,并以无模型的方式提取单层的非平衡介电函数。我们的结果表明,首次直接访问CRSBR中准单维激子的超快速介电响应,可能会推进基于Ultrathin van der waals磁铁的量子设备的开发。关键字:原子上的固体,范德华磁铁,各向异性激子,超快动力学,飞秒近场显微镜,Terahertz
了解哈伯德模型对于研究各种多体状态及其费尔米金和玻色子版本至关重要。最近,过渡金属二分元元素杂叶剂已成为模拟Hubbard模型丰富物理学的有前途的平台。在这项工作中,我们使用托有此杂种颗粒密度的WS 2 /WSE 2异核器设备探讨了费米子和玻色子种群之间的相互作用。我们分别通过电子掺杂和电子孔对的光学注射来独立调整费米子和骨气群。这使我们能够形成强烈相互作用的激子,这些激子在光致发光光谱中表现出很大的能量隙。通过观察激子强度的抑制抑制激子的抑制,而不是玻色子的弱相互作用气体的预期行为,这表明爆发剂的预期行为,这表明形成了玻体莫特绝缘子,进一步证实了激子的不可压缩性。我们使用包括相空间填充的两波段模型来解释我们的观察者。我们的系统提供了一种可控的方法,可以在广义的bose-fermi-Hubbard模型中探索量子多体效应。
在有机材料中,激子必须首先移动材料,然后分离并产生可用的电流。Biaggio的实验室使用激光来激发这些颗粒并观察其量子级相互作用。研究人员通过短激光脉冲和荧光跟踪激子行为,分析“量子节拍”以研究复杂的过程,例如单线裂变,三重态传输和三重态融合。单线裂变将初始激发(以自旋0,称为单重)分为两个三重态激子(每个带有自旋1),该激励仍保持在纠缠量子状态下的合并旋转0。
分子激子在自然和人工光收集、有机电子学和纳米级计算中起着核心作用。分子激子的结构和动力学对每种应用都至关重要,它们敏感地受分子堆积的控制。脱氧核糖核酸 (DNA) 模板化是一种强大的方法,它可以通过亚纳米级定位分子染料来实现受控聚集。然而,需要对染料堆积进行更精细的亚埃级控制,以针对特定应用定制激子特性。在这里,我们表明,将轮烷环添加到用 DNA 模板化的方酸菁染料中,可以促进难以捉摸的倾斜堆积排列,并具有非常理想的光学特性。具体而言,这些方酸菁:轮烷的二聚体表现出具有近乎等强度激子分裂吸收带的吸收光谱。理论分析表明,这些跃迁本质上主要是电子跃迁,并且仅在较窄的堆积角度范围内具有相似的强度。与方酸二聚体相比,方酸:轮烷二聚体还表现出更长的激发态寿命和更少的结构异质性。本文提出的方法可能普遍适用于优化激子材料,以用于从太阳能转换到量子信息科学的各种应用。
空间结构光场应用于半导体量子点会产生与均匀光束根本不同的吸收光谱。在本文中,我们使用圆柱多极展开式对不同光束的光谱进行了详细的理论讨论。对于量子点的描述,我们采用了基于包络函数近似的模型,包括库仑相互作用和价带混合。单个空间结构光束和状态混合的结合使得量子点中的所有激子态都变为光可寻址。此外,我们证明可以定制光束,以便选择性地激发单个状态,而无需光谱分离。利用这种选择性,我们提出了一种测量量子点本征态激子波函数的方法。该测量超越了电子密度测量,揭示了激子波函数的空间相位信息。这种相位信息的提取是从偏振敏感测量中已知的;然而,这里除了二维偏振自由度之外,还可以通过光束轮廓获得无限大的空间自由度。
作者的完整清单:Yuhan的Guan; Zhang Zhang的Zhejiang师范大学,XU;加利福尼亚州立大学Northridge,Guangjun的物理和天文学Nan; Zhejiang普通大学物理学系
原子上薄的半导体异质结构提供了一个二维(2D)设备平台,用于产生高密度的冷,可控制的激子。中间层激元(IES),绑定的电子和孔定位于分开的2D量子井层,具有永久的平面外偶极矩和长寿命,从而可以根据需要调整其空间分布。在这里,我们采用静电门来捕获并控制它们的密度。通过电气调节IE鲜明的偏移,可以实现2×10 12 cm-2以上的电子孔对浓度。在此高IE密度下,我们观察到指示了指示IE离子化过渡的线宽扩大,而与陷阱深度无关。该失控的阈值在低温下保持恒定,但增加了20 K,与退化IE气体的量子解离一致。我们在可调静电陷阱中对IE离子化的演示代表了朝着实现固态光电设备中偶极激子冷凝物实现的重要步骤。
摘要:光合生物将离散的集光复合物组织成大规模网络,以促进高效的光收集和利用。受大自然的启发,本文使用合成的 DNA 模板引导染料聚集体与菁染料 K21 形成离散的分支光子复合物和二维 (2D) 激子网络。DNA 模板的范围从四臂 DNA 瓦片(每臂约 10 纳米)到具有不同几何形状和不同尺寸的二维线框 DNA 折纸纳米结构,最大可达 100 × 100 nm 2 。这些 DNA 模板染料聚集体表现出强耦合的光谱特征和离域激子特性,从而实现高效的光子收集和能量传输。与在单个 DNA 瓦片上模板化的离散分支光子系统相比,互连的激子网络的能量传输效率提高了约 2 倍。这种自下而上的组装策略为创建具有复杂几何形状和工程能量路径的二维激子系统铺平了道路。
“如果我们想在量子计算方面取得进展并创造更具可持续性的电子产品,我们需要更长的激子寿命和不依赖电子电荷的新信息传输方式,”领导这项研究的亚历山德拉·兰扎拉 (Alessandra Lanzara) 表示。兰扎拉是能源部劳伦斯伯克利国家实验室 (Berkeley Lab) 的高级教职科学家和加州大学伯克利分校物理学教授。“在这里,我们利用拓扑材料的特性来制造一种寿命长且对无序性非常强大的激子。”