抽象的饮食omega -3多不饱和脂肪酸(n -3 pufas)和肠道微生物组相互影响。我们研究了用富含硬脂烟酸(SDA)的Buglossoides Arvensis Oil补充对人肠道微生物组的影响。采用人类肠道微生物生态系统(M-Shime)的粘膜模拟器,我们模拟了四个供体的回肠和上升结肠微生物组。我们的结果揭示了受BO影响的两个不同的微生物群簇,表现出共享和对比的变化。值得注意的是,两个簇中的杆菌和梭菌丰度都发生了类似的变化,并伴随着结肠中的丙酸盐产生。然而,在回肠中,簇2在BO诱导的丙酸水平方面显示出较高的代谢活性。因此,特别在该群集中鉴定出了通过琥珀酸途径,即细菌,副细菌和phascolarctocterium涉及丙酸酯途径的细菌三合会,即在该群集中发现了第二代探针的激增,例如Akkkermansia,例如Akkmermansia,在结肠中。最后,我们首次描述了肠道细菌产生N-酰基 - 乙醇胺,尤其是SDA衍生的N-稳态 - 稳态 - 乙醇胺的能力,在补充BO之后,这也刺激了另一种生物活性内球蛋白类似分子的产生,在两种情况下都涉及多个个体。Spearman的相关性使能够鉴定出可能参与内源性大麻素样分子产生的细菌属,例如与先前的报道一致,即ConmendAmide中的菌苯胺。这项研究表明,某些饮食油的人类微生物组的潜在健康益处可能适合分层的营养策略,并延伸到N -3 PUFAS之外,以包括微生物群衍生的内源性内源性内源性介质。
胃肠道中的微生物群开始随着出生而形成。250-400 m 2人的胃肠道遇到了60多吨养分,而某些细菌通过在结肠上定居的这些营养素进入人体(1)。这些被定殖的社区被定义为肠道菌群(2)。肠道菌群基本上受宿主的遗传结构和环境因素的影响,并且在整个生命中也发生了变化。饮食成分,微生物群落的结构和重塑的答案受宿主的遗传基础设施的影响(3)。微生物群的变化与包括肥胖和糖尿病在内的代谢疾病的出现有关。另一方面,肠道菌群节奏的调节,粘膜屏障完整性的保护,免疫系统的增强和维生素K,烟酸,生物素,pridoxin,riboflavin,riboflavin,pantothenic Acid和tiamine,例如许多基本功能的综合功能(3)。肠道中的各种细菌群落和代谢物类别受营养,养分成分,饮食和饥饿方法的影响。是间歇性饥饿方法之一,限时营养(时间限制-TRF)是一种营养模型,近年来人类首选,并被发现在没有能量限制的人类和动物研究中为许多好处提供了许多好处(4)。健康的男性成年人会增加成年人的微生物多样性和财富(6)。在许多最近的研究中,已经发现TRF对肠道微生物组成有重大影响,饮食维度和时间限制的差异改变了微生物群落中细菌的丰度和比率(5)。发现,发现由高脂饮食喂养的饮食中添加TRF模型对小鼠的肠道微生物结构具有积极影响,并防止了高脂肪饮食引起的大量有害代谢作用(7,8)。还报道说,TRF模型可通过保护肥胖症来增加微生物的丰度,并减少肥胖的菌群的丰度(9)。
偶氮化合物的区分是存在至少一个氮氮双键(n = n)。这些化合物可能具有各种结构。目前,合成的偶氮化合物在许多行业中广泛使用,包括化妆品,食品,油漆,塑料,汽车和分析化学[1-6]。如Oros等人报告的工作所示,研究了商业重氮化合物的抗菌特性。已经表明,合成染料的抗菌功效受其基本化学结构的强烈影响,而不是受生物学作用的选择性[7]。不适用于商业目的并包括异性零件的偶氮苯甲苯也可能导致抗菌物质,例如含有吲哚的偶氮染料[8,9],乙酰胺[10-12] [10-12],甚至是烟酸衍生物[13-15]。在这种特殊情况下,Aiube等。证明了基于偶氮的chalcones对白色念珠菌和塞拉蒂亚·马斯科斯(Candida Marcescens)具有值得注意的功效,超过了一些传统的抗生素药物和抗真菌治疗方法。基于这些发现,表明偶氮化合物对链球菌,酵母C和革兰氏阴性的机会性细菌具有活性。着色剂,例如偶氮部分,可能表现出抗菌特性。但是,必须仔细考虑官能团的设计[16-19]。al etaibi等。Kumar等。 [21]达到了相同的发现,表明偶氮化合物表现出强烈的抗菌作用,并且也充当抗真菌剂。Kumar等。[21]达到了相同的发现,表明偶氮化合物表现出强烈的抗菌作用,并且也充当抗真菌剂。[20]观察到,与抗菌氨苄青霉素和用作对照的抗菌氨基霉素和抗真菌性环己酰亚胺相比,某些偶氮衍生物被显示出显着的抗菌活性。Ali等人进行的研究。[22]表明,在元位置中具有2组的偶氮染料具有
4。Macneil S.用于皮肤组织工程的生物材料。今天。2008; 11:26-35。 5。 Ariento AR,Stoddart MJ,Alini M,Eglin D.关节软骨组织工程的生物材料:从生物学中学习。 Acta BioMater。 2018; 65:1-20。 6。 Torres ML,Oberti TG,FernándezJM。 HEMA和基于藻酸盐的软骨半融合水凝胶:合成和生物学表征。 J生物基科学多元杂志。 2020; 1-15。 https:// doi。 org/10.1080/09205063.2020.1849920 7。 Sultankulov B,Berillo D,Sultankulova K,Tokay TL,Saparov A. 在开发基于壳聚糖的生物材料的发展方面的进展。 生物分子。 2019; 9:470。 8。 JanouškováO。 用于软组织工程的合成聚合物支架。 Physiol Res。 2018; 67:S335-S348。 9。 otsu T,Matsumoto A,Shiraishi K,Amaya N,Koinuma Y. 取代基对二烷基烟酸与某些乙烯基单体的自由基共聚的影响。 J. Polym。 Sci。,A部分多部分。 化学。 1992; 30:1559-1565。 10。 al-Arbash ah,Elsagheer FA,Ali Aam,Elsabee MZ。 聚二烷基富马酸共聚物的玻璃转换温度。 J Polym Sci部分A:Polym Chem。 1999; 37:1839-1845。 11。 Fernandez JM,Molinuevo MS,Cortizo AM,McCarthy AD,Cortizo MS。 J Biomat Sci Poled。 12。2008; 11:26-35。5。Ariento AR,Stoddart MJ,Alini M,Eglin D.关节软骨组织工程的生物材料:从生物学中学习。Acta BioMater。2018; 65:1-20。6。Torres ML,Oberti TG,FernándezJM。HEMA和基于藻酸盐的软骨半融合水凝胶:合成和生物学表征。J生物基科学多元杂志。2020; 1-15。 https:// doi。org/10.1080/09205063.2020.1849920 7。Sultankulov B,Berillo D,Sultankulova K,Tokay TL,Saparov A.在开发基于壳聚糖的生物材料的发展方面的进展。生物分子。2019; 9:470。8。JanouškováO。 用于软组织工程的合成聚合物支架。 Physiol Res。 2018; 67:S335-S348。 9。 otsu T,Matsumoto A,Shiraishi K,Amaya N,Koinuma Y. 取代基对二烷基烟酸与某些乙烯基单体的自由基共聚的影响。 J. Polym。 Sci。,A部分多部分。 化学。 1992; 30:1559-1565。 10。 al-Arbash ah,Elsagheer FA,Ali Aam,Elsabee MZ。 聚二烷基富马酸共聚物的玻璃转换温度。 J Polym Sci部分A:Polym Chem。 1999; 37:1839-1845。 11。 Fernandez JM,Molinuevo MS,Cortizo AM,McCarthy AD,Cortizo MS。 J Biomat Sci Poled。 12。JanouškováO。用于软组织工程的合成聚合物支架。Physiol Res。2018; 67:S335-S348。9。otsu T,Matsumoto A,Shiraishi K,Amaya N,Koinuma Y.取代基对二烷基烟酸与某些乙烯基单体的自由基共聚的影响。J. Polym。 Sci。,A部分多部分。 化学。 1992; 30:1559-1565。 10。 al-Arbash ah,Elsagheer FA,Ali Aam,Elsabee MZ。 聚二烷基富马酸共聚物的玻璃转换温度。 J Polym Sci部分A:Polym Chem。 1999; 37:1839-1845。 11。 Fernandez JM,Molinuevo MS,Cortizo AM,McCarthy AD,Cortizo MS。 J Biomat Sci Poled。 12。J. Polym。Sci。,A部分多部分。化学。1992; 30:1559-1565。10。al-Arbash ah,Elsagheer FA,Ali Aam,Elsabee MZ。聚二烷基富马酸共聚物的玻璃转换温度。J Polym Sci部分A:Polym Chem。1999; 37:1839-1845。 11。 Fernandez JM,Molinuevo MS,Cortizo AM,McCarthy AD,Cortizo MS。 J Biomat Sci Poled。 12。1999; 37:1839-1845。11。Fernandez JM,Molinuevo MS,Cortizo AM,McCarthy AD,Cortizo MS。J Biomat Sci Poled。12。poly(ε-丙二酮)/多叶酸的表征作为骨组织工程的支架。2010; 21:1297-1312。Pasqualone M,Oberti TG,Andreetta HA,Cortizo MS。基于富马酸共聚物的膜,可俯瞰未来的透皮熟食设备:合成和性质。J Mater Sci Merted Med。2013; 24:1683-1692。13。Belluzo MS,Medina LF,Cortizo AM,Cortizo MS。基于生物医学应用多糖的聚电解质络合物的超声镇压。Ultrason Sonochem。2016; 30:1-8。14。Lastra ML,Molinuevo MS,Blaszczyk-Lezak I,Mijangos C,Cortizo MS。纳米结构的富马酸共聚物 - 壳聚糖交联支架:一项体外骨软骨发生再生研究。J Biomed Mater res a。2018; 106:570-579。15。kurita K.壳蛋白和壳聚糖:海洋甲壳类动物的功能性生物聚合物。Mar Biotechnol。2006; 8:203-226。 16。 rinaudo M.壳蛋白和壳聚糖:特性和应用。 Prog Polym Sci。 2006; 31:603-632。 17。 Croisier F,JérômeC。基于壳聚糖的生物材料用于组织工程。 EUR POLYM J。 2013; 49:780-792。 18。 Kim IY,Seo SJ,Moon HS等。 壳聚糖及其用于组织工程应用的衍生物。 生物技术副词。 2008; 26:1-21。2006; 8:203-226。16。rinaudo M.壳蛋白和壳聚糖:特性和应用。Prog Polym Sci。2006; 31:603-632。 17。 Croisier F,JérômeC。基于壳聚糖的生物材料用于组织工程。 EUR POLYM J。 2013; 49:780-792。 18。 Kim IY,Seo SJ,Moon HS等。 壳聚糖及其用于组织工程应用的衍生物。 生物技术副词。 2008; 26:1-21。2006; 31:603-632。17。Croisier F,JérômeC。基于壳聚糖的生物材料用于组织工程。EUR POLYM J。 2013; 49:780-792。 18。 Kim IY,Seo SJ,Moon HS等。 壳聚糖及其用于组织工程应用的衍生物。 生物技术副词。 2008; 26:1-21。EUR POLYM J。2013; 49:780-792。18。Kim IY,Seo SJ,Moon HS等。 壳聚糖及其用于组织工程应用的衍生物。 生物技术副词。 2008; 26:1-21。Kim IY,Seo SJ,Moon HS等。壳聚糖及其用于组织工程应用的衍生物。生物技术副词。2008; 26:1-21。2008; 26:1-21。
利什曼病是一种媒介传播疾病,由利什曼原虫属感染引起,利什曼原虫是专性细胞内原虫寄生虫。目前,人类疫苗尚不可用,主要治疗严重依赖全身用药,这些药物通常配方不理想且毒性很大,因此新药成为受疾病困扰的中低收入国家的高度优先事项,但由于利润率不高,大多数制药公司的议程中新药的优先级较低。需要新的方法来加速新药的发现或现有药物的重新定位。为了应对这一挑战,我们的研究旨在确定临床相关的利什曼原虫种之间共享的潜在蛋白质靶点。我们采用了减法蛋白质组学和比较基因组学方法,整合高通量多组学数据,根据不同的药物可药性指标对这些靶点进行分类。这项工作对 14 种致病性利什曼原虫种的 6502 个蛋白质靶点直系同源组进行了排名。在排名前 20 位的组中,已知具有吸引力药物靶标的代谢过程被重新发现,包括泛素化途径、氨酰基-tRNA 合成酶和嘌呤合成。此外,我们还发现了新的有希望的靶标,例如烟酸磷酸核糖转移酶和二氢硫辛酰胺琥珀酰转移酶。这些组表现出有吸引力的药物特性,包括与人类宿主蛋白质组的序列同一性小于 40%、预测的必要性、结构分类为高度药物化或药物化,以及在无鞭毛体形式中的表达水平高于第 50 个百分位。这项工作中提供的资源还代表了有关锥虫生物学的综合数据集合。
摘要益生菌枯草芽孢杆菌29784(BS29784)通过生物活性代谢物低黄嘌呤(HPX),烟酸(NIA)(NIA)和Pantothenate(PTH)来维持鸡的肠道健康,从而增强动物的韧性和性能。在这里,使用肠球菌在体外模型中,我们确定了这些代谢产物与肠道弹性的三个支柱之间的功能联系:免疫反应,肠壁和微生物群。我们在体外评估了BS29784营养细胞,孢子和代谢产物的能力,以调节全球免疫调节剂(使用HT-29-NF-κB和HT-29-AP-1报道细胞),肠道完整性),肠道完整性(HT-29-MUC2报道细胞)(HT-29-MUC2报道细胞和CACO-2细胞)以及CACO细胞(CACO-2),以及CACO-2-2。最后,我们使用鸡肉肠含量作为接种,模拟了肠发酵,以确定BS29784代谢产物对微生物群及其发酵型的影响。BS29784营养细胞比孢子更有效地降低了炎症反应,这表明它们的益处与代谢活性有关。为了评估这一假设,我们分别研究了BS29784代谢产物。结果表明,每个代谢产物都有不同的有益作用。pth和niA降低了促炎性途径AP-1和NF-κB的激活。HPX通过增强MUC2表达上调粘蛋白的产生。HPX,NIA和PTH增加了细胞增殖。PTH和HPX通过限制渗透性的增加来提高上皮弹性对炎症挑战。在盲肠发酵中,nia增加了乙酸乙酸盐,HPX增加了丁酸酯,而PTH则增加了乙酸乙酸酯,丁酸酯和丙酸酯。在回肠发酵中,PTH增加了丁酸酯。 所有分子调节菌群,解释了不同的发酵模式。 总的来说,我们证明了BS29784通过其分泌的代谢物在弹性的三条线上作用,从而影响了肠道健康。在回肠发酵中,PTH增加了丁酸酯。所有分子调节菌群,解释了不同的发酵模式。总的来说,我们证明了BS29784通过其分泌的代谢物在弹性的三条线上作用,从而影响了肠道健康。
基因组编辑是指修改生物体的 DNA 以改变其遗传信息。最有前途的基因组编辑工具之一是 CRISPR-Cas9,它代表成簇的规律间隔短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 9 (Cas-9)。CRISPR-Cas9 允许科学家通过靶向特定基因并引入修饰来精确改变 DNA 序列 [ 1 , 2 ]。在高胆固醇血症的情况下,主要目标是靶向参与胆固醇代谢的基因,以降低血液中的低密度脂蛋白 (LDL) 胆固醇水平。由于肝脏在脂蛋白颗粒的产生和清除中起着关键作用,因此基因组编辑策略经过优化以靶向肝细胞内的基因。例如,基于血清型 8 的腺相关病毒 (AAV) 载体对肝脏有特异性的趋向性,已在多项小鼠体细胞基因组编辑研究中用于 [3,4]。脂质纳米颗粒 (LNP) 也是 CRISPR-Cas9 编辑的运载载体,由于其能够与血清蛋白相互作用,可被肝细胞有效吸收 [5]。研究人员一直在探索利用基因组编辑开发新疗法,以替代现有疗法,包括他汀类药物、依折麦布、PCSK9(前蛋白转化酶枯草溶菌素/kexin 9 型)抑制剂、烟酸、胆汁酸螯合剂、纤维酸盐和贝伐单抗酸 [6-9]。他汀类药物在 20 世纪 80 年代末首次用于治疗高胆固醇。第一个被批准用于临床的他汀类药物是 1987 年的洛伐他汀 (Mevacor)。洛伐他汀获批后,其他他汀类药物也相继被开发并用于治疗高胆固醇血症。一些常用的他汀类药物包括辛伐他汀 (Zocor)、阿托伐他汀 (Lipitor)、普伐他汀 (Pravachol) 和瑞舒伐他汀 (Crestor)。虽然他汀类药物被认为是安全有效的,但使用时会出现不同的副作用,包括肌肉疼痛和无力、胃肠道症状和肝酶异常,这导致了替代疗法或补充疗法的发展 [ 10 , 11 ]。依折麦布通常被认为是无法耐受他汀类药物或需要进一步降低 LDL 水平的个人的有效选择 [ 12 ]。这种药物通过减少胆固醇从血管中吸收而起作用。
背景:利用蛋白质对之间的合成致死 (SL) 关系已成为开发抗癌药物的重要途径。烟酰胺磷酸核糖基转移酶 (NAMPT) 是 NAD+ 挽救途径的限速酶,与 NAD+ Preiss-Handler 途径中的关键酶烟酸磷酸核糖基转移酶 (NAPRT) 具有 SL 关系。NAMPT 抑制剂不仅具有临床潜力,可作为一种有前途的癌症治疗方法,而且可作为预防化疗引起的周围神经病变 (CIPN) 的手段。然而,由于 NAD+ 对正常细胞至关重要,因此 NAMPT 抑制剂的临床使用具有挑战性。本研究旨在确定一种新型 NAMPT 抑制剂,该抑制剂对 NAPRT 缺陷型癌细胞具有增强的选择性细胞毒性,并且在缓解 CIPN 方面具有显著的功效。方法:我们首先在一组肺癌细胞系中进行药物衍生物筛选,以选择一种在 NAPRT 阴性和阳性癌细胞系之间治疗窗口最广的药物。在体外和体内对 A4276 和其他 NAMPT 抑制剂进行了比较分析,以评估 A4276 对 NAPRT 阴性癌细胞的选择性及其潜在的不同 NAMPT 抑制机制。分析了患者来源的肿瘤转录组数据和各种癌细胞系中的蛋白质水平,以确认 NAPRT 耗竭与各种癌症类型中上皮-间质转化 (EMT) 样特征之间的相关性。最后,在体外和体内检查了 A4276 对轴突保护和 CIPN 治疗的功效。结果:生物标志物驱动的表型筛选发现 A4276 对 NAPRT 阴性癌细胞具有显著的选择性,而对 NAPRT 阳性癌细胞和正常细胞则没有。 A4276 对 NAPRT 阴性细胞的细胞毒性作用是通过其与 NAMPT 的直接结合实现的,抑制其酶功能达到最佳平衡水平,使 NAPRT 阳性细胞通过 NAPRT 依赖的 NAD+ 合成存活。NAPRT 缺陷可作为对 A4276 反应的生物标志物,以及各种肿瘤类型中 EMT 亚型癌症的指标。值得注意的是,A4276 通过降低 NMN 与 NAD+ 的比率比其他 NAMPT 抑制剂更有效地保护轴突免受沃勒变性。结论:本研究表明 A4276 选择性靶向 NAPRT 缺陷的 EMT 亚型癌细胞并预防化疗引起的周围神经病变,突出了其作为治疗药物的潜力
1。引言现代农业必须继续养活不断扩大的世界人口。为了支持不断增长的人群,已经采用了最大化生物量生产的策略。著名的例子之一是“绿色革命”,它显着提高了农作物的产量来消除饥饿。除了生物质的产量外,作物的营养价值是提供适当营养的另一个重要考虑因素。除了热量摄入量和诸如N,P,K和微量营养素之类的大量营养素外,Zn人类还依靠食品作物来获得某些微量营养素。由于饮食不足的微量营养素(例如矿物质和维生素)被视为“隐藏饥饿”而导致的营养不良。根际是植物根部与土壤之间的重要界面,当考虑植物与有益细菌之间的相互作用时,有助于可持续农业。大约35年前,克洛珀首先描述了促进植物生长的根瘤菌(PGPR)在植物生长和防御中的作用[1]。PGPR与植物根有关,在直接或间接促进植物生长中起着重要作用。生物铜质化和植物刺激是植物生长的直接启动子机制,可同时最大程度地减少化学肥料的使用并促进植物生长,以及具有生物防治和植物刺激性能的细菌,以增强植物中养分和疾病的控制。当前的情况例证了使用这些PGPR的植物 - 微生物相互作用领域的工作,该植物 - 微生物相互作用的工作重点是钉书钉作物的生物化。谁承认对人体正常功能至关重要的微量营养素,即。硒(SE),铁(Fe)和锌(Zn),并为PGPR介导的生物强化提供了很大一部分[2]。小麦是碳水化合物的重要来源。在全球范围内,当小麦作为全谷物食用时,它是人类食品中蔬菜蛋白的主要来源,是多种营养素和饮食纤维的来源[3]。在100克中,小麦提供了327公斤的食物能量,是多种必需营养素的丰富来源,例如蛋白质,饮食纤维,锌,铁,锰,磷和烟酸。几种B维生素和其他饮食矿物质的含量很大。小麦是13%的水,71%的碳水化合物和1.5%的脂肪。其13%的蛋白质含量主要是面筋。根据新蛋白质
Sravani Gogisetty,Mihira Kumara Mishra和Prabhat Ranjan Mishra摘要生物学世界由真菌的多样性和复杂性以及无与伦比的自然美所占据主导地位。各种微生物,包括丝状真菌,细菌和酵母菌,栖息在复杂的陆地生态系统中,称为叶斑铂,在植物叶的表面上发现。在叶子表面生长的霉菌称为phylloplane真菌。内生真菌经常在植物组织空间中无知地生活。在某个宿主植物中,它们会在细胞内或细胞间发育,以完成其生命周期的全部或一部分。他们被发现与在自然环境中生长的每种植物几乎都相连。,由于它们在植物的生存中的关键功能,因此他们被选为在整个进化过程中与宿主共同发展。传统的压力治疗方法一直以化学物质的使用为中心,由于化学物质的使用,由于其挥之不去的毒性,这种方法被证明是环境有害的。,由于它们是如此安全地使用,因此在科学界,生物学方法变得越来越受欢迎。作物植物植物植物是非致病微生物的重要来源,其中一些生物在治疗细菌和真菌感染方面表现出了有效性。使用琼脂板和湿室技术,从Arhar Cajanus Cajan的健康叶子中分离出了从9种不同属的14种真菌物种。关键字:Arhar,内生菌,霉菌,Phylloplane简介Cajanus Cajan(L。)通常被称为Pigeon Pea,Arhar,Red Gram或tur是亚洲和非洲半干旱热带地区的重要食用豆类(Kumar Cv等,2015,2015年)[11] [11]。在各种环境中,它在全球475万英亩(Choudhary AK等,2014)[5]上生长。它填补了小农雨养农民的可持续农业方法中的关键空隙。它在印度雨林农业中占有重要地位。这是该国各种农业生态学的重要组成部分,通常与谷物,豆类,油籽和小米相互互动。这是鹰嘴豆后的第二大脉冲作物,面积超过442万公顷(HA),输出为2.86吨或所有脉搏产生的16%,产量约为707 kg/ha。以及各种鸽子豌豆植物组件的多种用途,它主要被消耗为全国干燥的Dhal。在印度,大多数人口是素食主义者,提高农作物的生产力尤为重要,因为它有助于打击蛋白质缺乏症(Kumar Cv等,2015)[11]。由于必需氨基酸的免费性质,当小麦或大米与红克结合时,生物学值显着增加。核黄素,赖氨酸,烟酸,铁和硫胺素特别丰富。此外,众所周知,通过以每公顷40 kg的速度固定氮,并释放土壤结合的磷(Choudhary Ak等,2014)