其中 S(f)=−Rdxf(x)lnf(x) 是微分熵。如今,许多熵不确定性关系已得到证明和研究,例如用 Shannon 熵表示的具有离散谱可观测量的 Maassen-Uffink 熵不确定性关系[11-14],用互信息表示的信息排斥原理[15-17],Rényi 熵[13,18],Wehrl 熵[19,20],在存在(量子)记忆的情况下用条件熵表示的不确定性[14,21-24],以量化能量和时间之间的不确定性[25],或在更一般的互补算子代数设置中[26-28]。此外,离散变量和连续变量两种不同情况已在 [29, 30] 中统一。在本文中,我们将熵不确定性的概念扩展到标量量子场论,我们的动机有三方面。首先,信息论的观点已导致对量子场论的许多见解,最突出的是在纠缠[31-33]、热化[34-36]和黑洞物理[37-39]的背景下。由于不确定性原理是每个自然界量子理论的核心,因此严格的量子场的熵公式对于更深入地理解量子场论至关重要。其次,不确定性关系对于见证纠缠起着重要作用,特别是对于连续变量量子系统。除了 Simon [40] 和 Duan 等人提出的著名的二阶不可分离性标准之外。 [41] ,存在基于熵不确定关系的更强的熵标准 [42–44] 。此外,熵不确定关系可用于制定转向不等式 [45,46] ,或者通过包括(量子)记忆 [24] ,可以推导出纠缠度量的界限 [47] 。有关熵标准的实验应用,请参见 [45,47] 。
*通讯作者,电子邮件:cyprian.mieszczynski@ncbj.gov.pl摘要摘要McChasy Code的主要目标是,通过模拟在Cryselline结构和crysefters cryselline cropters cryselline cropters和collesters的过程中,在通道(RBS/c)中记录了Rutherford反向散射光谱实验实验,该光谱实验是在频道/c/c中复制了。该代码的2.0版本提供了模拟大型频道的可能性(Ca.10 8原子)基于晶体学数据或分子动态(MD)计算而创建的任意结构。在这项工作中,我们介绍了代码的当前状态以及最近对镍(Ni)单晶形成的扩展结构缺陷(边缘位错和位错环)的研究结果。描述了两种建模扩展缺陷的方法:一种使用McChasy Code(PEIERLS-NABARRO方法)开发的,另一种是通过MD(LAMMPS代码)对Ni结构进行修改和热化获得的另一种。由局部弹丸 - 通量密度分布在缺陷周围进行了定性和定量研究。1。在过去的几十年中,许多组对不同材料的辐射缺陷进行了广泛的研究。许多作者[1-4]将卢瑟福的反向散射光谱(RBS/C)技术用作分析离子植入单晶的结构特性的标准方法[1-4]。不幸的是,缺乏适当的RBS/C光谱分析和过度简化方法的工具,通常会引起误导性结果。因此,开发一个适当的工具,可以分别针对在研究晶体中形成的各种缺陷进行详细的定量分析。McChasy V.1.0是在八十年代末在国家核研究中心开发的[5,6]。该代码的第一个版本的主要原理是通过模拟He-ions在内部旅行
摘要:量子纠缠的动力学在解释孤立的多体系统中热平衡的出现方面起着核心作用。然而,臭名昭著的纠缠很难衡量,实际上可以“伪造”:最近的作品引入了伪伦理的概念,描述了多体的合奏指出,虽然只有微弱的纠缠,但不能有效地与具有更高纠缠的州有效区分,例如希尔伯特空间中的随机状态。这提示了一个问题:在量子系统中实现热平衡确实需要多少纠缠?在这项工作中,我们通过引入量子动力学的随机电路模型来解决这个问题,这些动力学在后期均衡到伪符号的合奏 - 一种现象,我们命名了集合合奏伪热化。这些模型复制了热平衡的所有有效观察到的预测,同时仅产生一个少量(且可调的)纠缠量,从而偏离了基于热力学的“最大渗透原理”。我们检查了(i)小子系统上的伪驱动集合如何随时间的函数扩展到整个系统,以及(ii)如何从初始产品状态中生成伪entangled的集合。我们将上述问题映射到计算基础子集的经典马尔可夫链家族。这种马尔可夫链的混合时间与在每个统计时刻或副本数量的水平上与HAAR随机状态无法区分的时间尺度有关。基于数字支持的严格边界和猜想的组合,我们认为每个马尔可夫链的放松时间和混合时间在大系统大小的极限中具有不同的渐近行为。这是截止现象的必要条件:突然的动态过渡到平衡。因此,我们猜想我们的随机电路会导致渐近的区分性转变。
可编程量子仿真的新生平台可在近似隔离的系统中前所未有的访问对远程平衡量子多体动力学的新制度的访问。在这里,实现对量子多体纠缠的精确控制是量子传感和计算的重要任务。广泛的理论工作表明,这些能力可以实现具有拓扑的方法和临界现象,这些阶段和关键现象表现出了拓扑合理的方法,可以创建,保护和操纵量子纠缠,从而对大量的错误进行自我纠正。迄今为止,实验实现已局限于经典(非输入)对称性的OR- 1-5。在这项工作中,我们证明了一个新兴的动态对称性受保护的拓扑阶段(EDSPT)6,在Quastinuum系统模型H1诱捕的ION量子处理器7中的十171 Yb +超固量量子的准驱动阵列中。此阶段表现出动态保护的边缘量子位,免受控制误差,串扰和流浪场。至关重要的是,这种边缘保护纯粹依赖于紧急的动力对称性,这些动力对称性绝对稳定在通用相干扰动中。此属性对于准二驱动的系统很特别:正如我们所证明的那样,定期驱动的Qubit-Array的类似边状态容易受到对称性破坏错误的影响,并迅速解压缩。我们的工作为实施更复杂的动力学拓扑订单8,9铺平了道路,这将使量子信息的错误操纵。mbl可以保护“热”,密集且驱动强的物质中的长寿命量子相干动力学。提供理解和分类新型的普遍动力学现象(稳定阶段和关键现象的动态类似物)可能会在孤立的量子多体系统中引起的基本科学挑战。早期研究已经对热化和混乱10的量子机械基础产生了深入的见解,并且已经证明了如何通过多体定位(MBL)通过人工随机性和混乱来预防热化。它可以启用具有固有动力学量子相的新类别,其特性在静态热平衡中从根本上被禁止,例如动态对称性破坏和拓扑8。从实际的角度来看,通用和量子相干的动力学行为诱人地提供了错误的弹性方法来创建,保护和操纵量子多体纠缠 - Quantum Compuce的驱动力。要执行量子计算,人们面临着隔离Qubits以保持其连贯性的愿望与强烈相互作用量子的愿望之间的权衡,以执行计算。即使是从环境反向分解的完美隔离中,由于流浪场,栅极错误校准,跨言论等,强烈的Qubit间耦合不可避免地会导致残留,连贯的误差,从而破坏了计算。也许在违反直觉上,相干错误可能比不连贯的错误更具破坏性。尤其是,与不连贯的误差相比,相干误差的n门引起的不忠性可以随着〜n 2ϵ2的形式增长。尽管对算法性能产生了巨大的有害影响,但连贯的错误仍在挑战。标准的随机台上标记过程,例如,将相干和不相干的误差组合到单个有效的每门误差中,这可以显着高估与计算相关的结构性电路的准确性。采用动态脱钩脉冲序列(DDS)是一种时间悠久的方法,可以减轻与不受控制的静态流浪场相关的某些类型的相干误差。然而,对于使用全局单旋旋链控制的传统自旋回波协议,脱钩脉冲中大小的略微缺陷会累积并破坏时间〜1 /ϵ的分离。相比之下,在理论上,动态阶段8的最新工作已经预测,多自旋相互作用的局部控制可以实现自然校正的DDS,这些DDS固有地对抗大型相干错误。这些方案的鲁棒性来自动力学的巨大量化拓扑不变。
带有门(局部单位)的量子电路尊重全球对称性,在量子信息科学及相关领域(例如凝结物质理论和量子热力学)中具有广泛的应用。,尽管它们广泛使用,但此类电路的基本属性并没有得到很好的理解。重新说,发现尊重全局对称性的通用单位也无法使用尊重相同对称性的门来实现,即使是大致也无法实现。这种观察提出了重要的开放问题:尊重全球对称性的K-local门可以实现哪些统一转换?换句话说,在全局对称性的主题中,相互作用的局部性如何限制复合系统的可能时间演变?在这项工作中,我们针对阿贝尔(交换性)对称的情况解决了这些问题,并开发了与这种对称性合成电路的建设性方法。非常明显的是,作为推论,我们发现,尽管相互作用的局部性仍然对可实现的单位施加其他限制,但在非亚伯式对称性的情况下观察到的某些限制并不适用于带有Abelian符号对称性的电路。例如,在具有一般非亚洲对称性的电路中,例如su(d),在一个子空间中实现的单一实现对称性的子空间中的一个不可还原表示(电荷)决定了多个其他分支机构中实现的单位者,具有对称对称性的不相等表示。此外,在某些部门中,而不是所有尊重对称性的单位,可实现的单位是该组的符号或正交亚组。我们证明,在阿贝尔对称性的情况下,这些限制均未出现。这个结果表明,在阿贝尔对称性下,全局非亚伯对称可能会以不可能的方式影响量子系统的热化。
指定多体量子系统状态所需的参数数量随其成分数量呈指数增长。这一事实使得在计算上难以准确描述动力学并在微观层面上表征状态。在本论文中,我们采用量子场论概念来实验性地表征远离平衡态的旋量玻色气体。首先,我们引入相关概念,这些概念为新兴宏观现象提供有效描述,其公式与超冷原子系统的能力相匹配。在我们的实验研究中,我们在准一维陷阱几何中采用 87 Rb 旋量玻色-爱因斯坦凝聚态。我们通过测量自旋自由度的波动来探索相图作为有效二次塞曼位移的函数,并确定三个不同的相。利用这些知识,我们研究了在分离不同相的量子相变中发生瞬时淬灭后发生的不稳定性。这些不稳定性使我们能够以高度可控的方式将系统驱动到远离平衡状态。在淬火后的很长一段时间内,我们观察到与非热不动点的出现相关的通用动力学。横向自旋角取向的结构因子具有在时间和空间中的重新缩放,具有通用指数以及通用缩放函数。利用实验控制,我们探测了这种现象对初始条件细节的不敏感性。复值横向自旋场的空间分辨快照允许提取单粒子不可约关联函数,这是量子有效作用的基石。我们发现在高度占据状态下出现了低动量的 4 顶点的强烈抑制。引入的概念与提出的实验适用性为研究多体系统在其演化的所有阶段提供了新方法:从初始不稳定性和远离平衡的瞬态现象到最终的热化。
尽管在理解极端环境下的物质方面不断取得令人瞩目的进展,但利用现有的分析和计算技术,在实验和观察之外进行定量扩展仍然具有挑战性。众所周知,经典计算在提供量子系统动力学或密集量子系统性质的稳健结果方面存在局限性,例如参考文献 [1]。Feynman [2] 等人的开创性工作已经预见到了这些局限性,他们将量子计算确定为一条前进的道路。量子计算机现已成为现实,虽然发展迅速,多样性和能力不断增强,但目前仅限于中等大小的噪声量子比特和量子数系统,量子相干时间相对较短,即我们处于噪声中型量子 (NISQ) 时代 [3]。量子计算提供的额外能力是对纠缠和叠加的控制,我们正在学习如何将其集成到我们的计算工具箱和分析技术中。量子计算对于特定的计算机科学问题具有优势,例如参考文献 [4]。 [4],研究人员现在正积极寻求量子优势在科学应用方面的应用。由于我们在标准模型物理中面临的挑战本质上是量子力学的,人们乐观地认为,它们可能为科学应用提供量子优势的早期证明。使用理想的量子计算机可以有效地进行实时时间演化 [5]。因此,如果能以足够的精度准备相关的初始状态,未来的量子计算机有望模拟复杂过程的时间演化,如强子化和碎裂、低能核反应、热化、相干中微子味演化和早期宇宙中的物质产生,例如参考文献 [6–8]。尽管初始状态准备在规模上通常效率不高,即使使用量子计算机,但大自然在这方面对我们通常很仁慈,出现了对称性、间隙和层次结构,因此经典和量子模拟的结合是可行的
将曲面上扁平线束的最小浸入与临界特征值度量联系起来 Santiago Adams 导师:Antoine Song 在现有文献中,第一个特征值在曲面上临界的度量与该曲面在任意维球面中的最小浸入之间存在着密切的联系。我们知道,对于具有临界度量的曲面,存在一组拉普拉斯算子的特征函数,它们定义了进入球面的最小浸入。我们旨在使用局部参数将该理论扩展到扁平线束特征截面的情况。也就是说,给定一个第一个特征值在线束上临界的度量,我们旨在使用其特征截面的升力来定义其通用覆盖在球面中的最小浸入,并更好地理解是否存在原始曲面进入球面的最小浸入。伊辛铁磁体在经典和量子极限下的热力学性质 Sophia Adams 导师:Thomas Rosenbaum 和 Daniel Silevitch 该项目旨在探测模型伊辛铁磁体 LiHoF 4 在经典和量子相变中的热力学性质。经典跃迁发生在临界温度 1.53 K 和零磁场下,而量子跃迁发生在零温度极限下 50 kOe 量级的临界横向磁场下。我们将使用比热数据来比较两个跃迁的临界指数及其之间的交叉。 一种使用基于分类器的生成器生成和预筛选蛋白质以确定结合亲和力的新方法 Victoria Adams 导师:Matt Thomson 和 Alec Lourenco 由于当前方法筛选蛋白质结合功效的速度和规模,测试新的工程结合蛋白设计非常无效。定量而不是定性筛选新蛋白质将进一步提高效率。 Thomson 实验室开发了一种高通量筛选方法,用于收集有关结合蛋白的信息并实现蛋白质设计。在我的项目中,我致力于开发一种使用蛋白质语言模型预筛选生成蛋白质的新方法。应用现有的蛋白质大型语言模型 (pLLM),例如进化尺度模型 (ESM) 和 AlphaFold 2 & 3,我正在研究一种生成蛋白质然后预筛选其结合亲和力的方法。我还有机会学习如何使用实验室的高通量筛选分析来实验性地测试蛋白质设计。到目前为止,我还没有完全开发的方法/模型,但我有一个需要微调的基本分类器,并且需要一个仍需要指定最佳参数的生成器。我希望能够完成这些编程改进,并可能能够在夏季结束前通过应用高通量筛选来测试它们。来自路径积分的时间类纠缠 Zofia Adamska 导师:John Preskill 和 Alexey Milekhin 大多数量子力学形式主义都从不同的角度来看待空间和时间,这从相对论物理学的角度来看似乎是不自然的。为了解决这种不对称性,我们提出了一种时空密度矩阵的新定义,该定义源自路径积分方法,以更好地分析时空中的量子信息。我们的动机基于相对论量子场论中的观察,其中该密度矩阵的 Renyi 熵与通过从空间类分离到时间类分离的解析延续得出的结果完全一致。我们演示了如何使用这个密度矩阵来限制时空相关函数,并表明我们的界限比其他方法更紧并且遵循 Lieb-Robinson 界限。此外,我们在量子计算机上测试了这个时空密度矩阵对单量子比特系统的预测。使用我们的方法计算的时空纠缠构成了热化的新探针,并且可以为选择用于量子多体系统时间演化的有效张量网络假设提供启示。使用合成细胞建立病毒宿主相互作用的最小模型 Layla Adeli 导师:Richard Murray 和 Zach Martinez 利用最小模型研究合成细胞病毒感染的潜力使其成为研究尚未得到充分研究的病原体的首选。为了设计 PhiX174 噬菌体的合成宿主,我们尝试将 PhiX174 识别的脂多糖 (LPS) 整合到脂质体膜中,以潜在地封装无细胞转录、翻译和复制系统 (PURE Rep)。此外,设计为在脂质体内由 PhiX174 基因触发时发出荧光的立足点开关可以检测 PhiX174 基因组的 DNA 转录——我们目前的工作包括设计一种具有高效性的开关。我们已经成功生产出脂质体,并正在努力整合检测机制我们在量子计算机上测试该时空密度矩阵对单量子比特系统的预测。使用我们的方法计算的时空纠缠构成了一种新的热化探测,可以为选择一种有效的张量网络假设来研究量子多体系统的时间演化。使用合成细胞建立病毒宿主相互作用的最小模型 Layla Adeli 导师:Richard Murray 和 Zach Martinez 利用最小模型研究合成细胞病毒感染的潜力使合成细胞成为研究尚未得到充分研究的病原体的首选。为了设计 PhiX174 噬菌体的合成宿主,我们尝试将 PhiX174 识别的脂多糖 (LPS) 整合到脂质体膜中,以潜在地封装无细胞的转录、翻译和复制系统 (PURE Rep)。此外,当脂质体中的 PhiX174 基因触发时,设计为发出荧光的立足点开关可以检测 PhiX174 基因组的 DNA 转录——我们的工作目前包括设计一种具有高效性的立足点开关。我们已经成功生产出脂质体,并正在努力整合检测机制我们在量子计算机上测试该时空密度矩阵对单量子比特系统的预测。使用我们的方法计算的时空纠缠构成了一种新的热化探测,可以为选择一种有效的张量网络假设来研究量子多体系统的时间演化。使用合成细胞建立病毒宿主相互作用的最小模型 Layla Adeli 导师:Richard Murray 和 Zach Martinez 利用最小模型研究合成细胞病毒感染的潜力使合成细胞成为研究尚未得到充分研究的病原体的首选。为了设计 PhiX174 噬菌体的合成宿主,我们尝试将 PhiX174 识别的脂多糖 (LPS) 整合到脂质体膜中,以潜在地封装无细胞的转录、翻译和复制系统 (PURE Rep)。此外,当脂质体中的 PhiX174 基因触发时,设计为发出荧光的立足点开关可以检测 PhiX174 基因组的 DNA 转录——我们的工作目前包括设计一种具有高效性的立足点开关。我们已经成功生产出脂质体,并正在努力整合检测机制
反应中,必须在中子失活而无法激活原子核或离开反应堆之前将其用于裂变。能够维持链式反应的反应堆被称为具有临界质量。裂变过程中瞬发中子发射的能量约为 2 MeV。238 U 和 235 U 的裂变对中子能量的依赖性表明,235 U 对热中子(20 meV)的截面比 238 U 在 2 MeV 时的截面大三个数量级(238 U 裂变的阈值中子能量为 1.8 MeV)。因此,显然最好的选择是减慢中子的速度。尽管 235 U 约占总 U 同位素混合物的 5%。为了获得临界质量,有必要尽可能快地将它们减速到热能,此时裂变的截面大得多,而其他材料的活化截面较小。热化是通过与较小且不可活化的原子核(如氢或氘(在水中)或碳(石墨))的弹性碰撞完成的。快中子也可用于链式反应堆,但它们在将轻原子核嬗变为放射性原子核以及从重原子核产生可裂变材料方面更具反应性,例如通过中子俘获和随后的两次β衰变将铀 238 转化为钚 239。而快中子反应堆更为复杂。因此,几乎所有现有的商用核电站都使用热中子运行。在这里,有必要与聚变进行快速比较,在聚变中,氘核和氚核聚变形成氦原子和自由中子。释放的能量为 17.6 MeV,大部分是 14.2 兆瓦的超快中子。每输出 1 千瓦热量,就会产生更多、能量更高的中子,这将导致反应堆结构更大规模的激活。辐射对核电站结构的损害是一些裂变电站的寿命可以延长至一个世纪的原因,同时可以预见到更快的周转速度。然后,需要考虑转换成电能的效率。作为比较,第三代反应堆的转换效率约为 30%,而第四代高温反应堆使用联合循环可以达到 60%。在核聚变中,产生的电能中很大一部分必须用于简单地操作磁铁;即使热量可以以 60% 的效率转化为电能,总效率预计也只有 10-30%。由于这些原因,即使产生的能量超过了维持磁铁运转所需能量,聚变发电厂也需要几十年的时间才能实现经济可行性。
美国专利 9759862 绝热/非绝热偏振分束器 美国专利 9748429 具有减少暗电流的雪崩二极管及其制造方法 美国专利 9740079 集成光学。具有电子控制光束控制的收发器 美国专利 9696492 片上光子-声子发射器-接收器装置 美国专利 9612459 带有微加热器的谐振光学装置 美国专利 9467233 功率计比率 稳定谐振调制器的方法 美国专利 9488854 高速光学相移装置 美国专利 9391225 二维 APD 和 SPAD 及相关方法 美国专利 9366822 具有同时电连接和热隔离的热光调谐光子谐振器 美国专利 9329413 高线性光学调制的方法和装置 美国专利 9268195 使用四波混频产生纠缠光子的方法和装置 美国专利 9268092 导波光声装置 美国专利 9261647在半导体波导和相关设备中产生应变 美国专利 9239431 通过热机械反馈实现谐振光学设备的无热化 美国专利 9235065 适用于差分信号的热可调光学调制器 美国专利 9128308 低压差分信号调制器 美国专利 9127983 用于控制工作波长的系统和方法 美国专利 9083460 用于优化半导体光学调制器操作的方法和设备 美国专利 9081215 硅光子加热器调制器 美国专利 9081135 用于维持光子微谐振器谐振波长的方法和设备 美国专利 9063354 用于稳健无热光子系统的被动热光反馈 美国专利 9052535 电折射光子设备 美国专利 8947764 高速光子调制器设计 美国专利 8822959 光学相位误差校正方法和装置 美国专利 8625939 超低损耗腔和波导散射损耗消除 美国专利 8615173 集成谐振光学装置波长主动控制系统 美国专利 8610994 具有减小的温度范围的硅光子热移相器 美国专利 8600200 纳米光机械换能器 美国专利 8027587 集成光学矢量矩阵乘法器 美国专利 7983517 波长可调光环谐振器 美国专利 7941014 具有绝热变化宽度的光波导装置 美国专利 7667200 热微光子传感器和传感器阵列 美国专利 7616850 波长可调光环谐振器