印度科学与工业研究委员会 - 矿物与材料技术研究所 (CSIR-IMMT) 是一家位于印度布巴内斯瓦尔的顶级研究机构。它专注于开发与矿物、材料和工艺相关的创新技术,旨在推动工业增长和可持续发展。CSIR-IMMT 成立于 1964 年,在促进可持续发展和工业增长方面发挥着至关重要的作用。该研究所已成为一个卓越中心,专注于开发先进材料和零废物工艺,为采矿、钢铁、水泥和化学工业做出了重大贡献。值得注意的是,CSIR-IMMT 在热喷涂技术方面表现出色,创造出耐用、耐磨和超硬涂层,可提高工业部件的性能和使用寿命。其多学科科学家团队利用最先进的研究设施有效地实施尖端技术。在过去十年中,CSIR-IMMT 通过先进的工艺知识和咨询服务,帮助印度工业应对全球化挑战,强调公私伙伴关系。因此,该研究所已成为矿产行业的首选,同时也提高了关键原材料的资源效率。通过培训计划和合作,CSIR-IMMT 继续为印度的科学和工业格局做出重大贡献,为未来材料技术和涂料的进步铺平了道路。有关 CSIR-IMMT 的更多信息,请登录
热喷涂包含各种看似简单的表面工程工艺,其中固体材料(线材、棒材、颗粒)被等离子射流或燃烧火焰快速加热,熔化并推向要涂覆的基材。 基材表面的熔融颗粒快速凝固,一点一点积聚成一层,该层可具有多种功能,包括防止磨损、侵蚀、腐蚀和热或化学降解。 涂层还可以赋予基材特殊的电、磁或装饰性能。 许多工业领域都采用厚涂层来恢复或获得所需的工件尺寸和规格。 本文在编写时考虑到了材料工程和材料科学专业学生的理论和实践要求。它是根据 1991 年至 1995 年期间在泰国曼谷吞武里国王理工学院能源与材料学院材料工程专业硕士生课堂上以及 1993 年以来在弗莱贝格矿业技术大学技术 (应用) 矿物学专业学生课堂上所讲授的课题发展起来的。作者在 1987 年至 1988 年担任加拿大艾伯塔省埃德蒙顿市艾伯塔研究委员会工业技术部工业产品与材料科科长期间,也积累了等离子喷涂技术方面的经验。
描述和应用 AI-1800-SP Superbond 是一种独特的镍、钼、铝丝,由澳大利亚开发,专门用于生产高品质、高抗拉强度的粘结涂层,专用于电弧喷涂工艺。这种合金丝可产生坚韧、致密且耐高温氧化、抗热冲击和耐磨的涂层。尽管 AI-1800-SP Superbond 主要作为粘结涂层开发,但也适合用作一步式单涂层系统,能够从粗糙到精细的喷涂,并通过研磨或用硬质合金工具加工完成。可达到 5 微英寸的表面光洁度。AI-1800-SP Superbond 的卓越自粘性能归因于合金在电弧中达到的极高过热温度(电弧温度高达 6,650°C),以及熔融颗粒撞击时合金和基材之间形成的冶金结合(微冲击焊接)。应用:AI-1800-SP Superbond 可自粘合到一系列光滑的金属表面,包括退火或硬化碳钢、合金钢、不锈钢、镍、铸铁、钛和钽。这种自粘合特性可成功粘合到光滑的化学清洁表面上,大大减少了成功热喷涂涂层通常所需的大量基材准备工作。但是,在可能的情况下,作为一般规则,应通过粗加工(螺纹加工)或喷砂处理表面,使用 24 目氧化铝或冷硬铁砂,喷砂压力为 550kPa(80 psig)。值得注意的是,实现的粘合强度(如下所示)超过了镍铝等离子喷涂涂层,即超级涂层和厚度超过 6-7 毫米(0.25 英寸)的涂层已成功应用。典型的焊缝金属分析
如需了解更多信息,请联系: Petra Ammann 市场传播主管 欧瑞康表面解决方案部门 电话 +423 388 7500 petra.ammann@oerlikon.com http://www.oerlikon.com/ 关于欧瑞康表面解决方案部门 欧瑞康是全球领先的表面和增材制造解决方案与服务提供商。该部门提供市场领先的薄膜、热喷涂和增材制造技术、设备、部件和材料等广泛的产品组合。运输中的排放减少、工具和部件的使用寿命和性能最大化、效率提高和智能材料是其领先地位的标志。该部门数十年来一直开拓技术,通过遍布 37 个国家的 170 多个站点的全球网络为客户提供标准化和定制化解决方案。欧瑞康表面解决方案部门拥有欧瑞康巴尔查斯、欧瑞康美科、欧瑞康 AM、欧瑞康 Riri 和欧瑞康 Fineparts 等技术品牌,专注于改善和最大化性能、功能、设计、可靠性和可持续性的技术和服务,这些技术和服务为汽车、航空、工具和一般工业以及奢侈品、医疗、半导体、发电和石油天然气市场的客户带来了创新和改变游戏规则的优势。该部门隶属于上市公司欧瑞康集团 (SIX: OERL),总部位于瑞士,拥有 12,600 多名员工,2023 年的收入为 27 亿瑞士法郎。更多信息请访问:www.oerlikon.com/surface-solutions
入围候选人将通过电子邮件/电话通知并邀请参加面试。参加面试不会获得任何 TA/DA 报酬。该职位立即可用。面试将于 2023 年 5 月/6 月举行。任命将与项目同时结束,纯属临时任命。选择将基于资格、经验和面试表现。NITK Surathkal 保留拒绝任何或所有申请的权利,无需说明任何理由。项目摘要:由于磨损、腐蚀和氧化导致表面退化,挑战日益增加,发电厂或飞机工业中使用的大多数工程部件都面临性能下降和产品设计寿命缩短等问题。对能够一次性解决许多问题的新型材料的需求是当务之急。如果说到锅炉或燃气轮机,涂层需要具有抗高温侵蚀、腐蚀和氧化性能。这主要是因为解决任何类型的表面退化都无助于应对挑战环境。众所周知,NiAl 合金具有高温性能。然而,关于它们作为热喷涂涂层的应用研究尚未详细探讨,尤其是当 NiAl 用 cBN 和 SiC 等硬质相增强时。NiAl 具有有序的晶体结构、低密度、高熔点、高硬度、高机械强度、高温腐蚀和耐磨性。另一方面,CBN 和 SiC 颗粒是基础。它们以高熔点、低密度和极高的硬度而闻名。它们具有高耐化学性、良好的高温强度、优异的抗热震性和优异的耐磨性。这些属性是解决表面退化问题的增强相的完美选择。因此,本提案重点关注使用 HVAF 和激光重熔技术开发以 CBN 和 SiC 为增强相的新型 NiAl 复合涂层。生产的涂层可用于保护发电厂的锅炉部件或修复某些飞机部件。NiAl 与 CBN 或 SiC 复合涂层将使用 HVAF 和激光重熔技术。将进行的主要实验是高温滑动磨损、侵蚀和氧化试验。将详细研究添加 cBN 和 SiC 将如何影响 NiAl 复合涂层的高温行为。
[1] Michael DR, MD,《无骨水泥髋臼杯的演变回顾》,ORTHOSuperSite,2008 年 12 月 1 日。[2] Medacta 文件中的数据。[3] YK Lee、KC Kim、WL Jo、YC Ha、J. Parvizi、KH Koo。髋臼金属壳内锥角对陶瓷内衬的错位力和分离力的影响。《关节成形术杂志》2017 年 4 月;32(4):1360-1362。[4] YK Lee、JY Lim、YC Ha、TY Kim、WH Jung、KH Koo。预防 Delta 陶瓷对陶瓷全髋关节置换术后陶瓷内衬断裂。《骨科与创伤外科档案》2021 年 7 月;141(7):1155-1162。 [5] L. Dall'Ava、H. Hothi、J. Henckel、A. Di Laura、P. Shearing、A. Hart。当前 3D 打印髋臼钛植入物的比较分析。3D 打印医学 2019;5:15。[6] P. Robotti、A. Sabbioni、L. Glass、B. George,《热等离子喷涂大孔钛涂层》,ITSC 2013,国际热喷涂会议,2013 年 5 月 13 日至 15 日,韩国釜山。[7] JE Biemond 等人,《3 维电子束产生的植入物表面骨长入潜力的体内评估以及酸蚀和羟基磷灰石涂层等附加处理的效果》,J. Biomat。 Appl,2011 年 1 月 27 日在线发表,0885328210391495。[8] R. Ferro de Godoy 等人,通过创新粉末冶金方法制造的钛大孔结构的体内评估。eCM XIII 论文集:骨固定、修复和再生,2012 年 6 月 24-26 日,瑞士达沃斯。[9] A. Goodship 等人,通过放电等离子烧结产生的工程表面拓扑结构的体内生长潜力评估,第 9 届世界生物材料大会论文集,2012 年 6 月 1-5 日,中国成都。
气溶胶沉积 (AD) 可通过气流中的粒子沉积形成致密涂层;在 AD 中,气溶胶通过收敛-发散喷嘴,以超音速粒子速度促进惯性粒子撞击所需基材。与热喷涂方法不同,AD 可以在接近室温下应用;与冷喷涂不同,在 AD 中,气溶胶通常在喷嘴上游处于大气压下。尽管之前已成功演示了 AD,但与 AD 系统中粒子运动相关的许多方面仍不太清楚。在这项工作中,我们模拟了具有平面基材的狭缝型收敛-发散喷嘴的典型 AD 工作条件下的可压缩流场分布和粒子轨迹。在检查流体流动分布时,我们发现速度和压力分布以及冲击结构对喷嘴的上游和下游工作压力很敏感。这些最终会影响粒子撞击速度。重要的是,在 AD 中,粒子阻力状态是动态的;粒子克努森数和马赫数都可以相差几个数量级。为了辅助粒子轨迹模拟,我们训练了一个神经网络,根据现有实验数据、理论极限和新的直接模拟蒙特卡罗 (DMSC) 结果预测粒子上的阻力。基于神经网络的阻力定律取决于马赫数和克努森数,与 DSMC 模拟数据相比,其一致性比预先存在的相关性更好。借助该定律,粒子轨迹模拟结果表明,对于给定的粒子密度,存在一个最佳粒子直径,以最大化粒子撞击速度。我们还发现,在 AD 中,粒子会经历与尺寸相关的惯性聚焦,即存在一个特定的粒子直径,其中粒子沉积线宽最小。小于此直径的粒子聚焦不足,大于此直径的粒子聚焦过度,因此在两种情况下都有较大的沉积线宽。使用轨迹模拟,我们还开发了一个框架,可用于评估喷嘴上游任何气溶胶尺寸分布函数的位置相关质量、动量和动能通量到沉积基质的通量。结果表明,对于实验室可达到的典型气溶胶浓度,动能通量可以接近在具有相变的对流传热中通常观察到的量级,因此 AD 中的平动能到热能的传递可能是形成致密涂层的关键因素。关键词:气溶胶沉积;收敛-发散喷嘴,惯性聚焦;惯性撞击;直接模拟蒙特卡罗
摘要:在这项工作中,我们介绍了一种人工智能(AI)应用程序(CHATGPT)来培训另一个基于AI的应用程序。作为后一个,我们显示了一个名为Terabot的对话系统,该系统用于精神病患者的治疗。我们的研究是出于这样一个事实的激励,即对于这种特殊领域的系统,很难获取大量的现实数据样本来增加培训数据库:这需要招募更多的患者,这既耗时又昂贵。为了解决这一差距,我们采用了神经大型语言模型:CHATGPT版本3.5,仅生成用于培训我们的对话系统的数据。在最初的实验中,我们确定了最常见的意图。接下来,我们用一系列提示为Chatgpt提供了喂养,这触发了语言模型,以生成许多其他培训条目,例如,在与健康用户进行初步实验中收集的短语的替代方案。以这种方式,我们将培训数据集扩大了112%。在我们的案例研究中,为了进行测试,我们使用了来自32名精神病患者的2802次语音记录。作为评估指标,我们使用了意图识别的准确性。使用自动语音识别(ASR)将语音样本转换为文本。分析表明,患者的语音对ASR模块的质疑显着,导致语音识别恶化,因此意图识别的精度较低。但是,由于使用ChatGpt生成的数据增加了培训数据,意图识别精度相对增加了13%,总共达到了86%。我们还模拟了无错误的ASR的情况,并显示了ASR错误识别对意图识别准确性的影响。我们的研究展示了使用生成语言模型开发其他基于AI的工具的潜力,例如对话系统。
抽象的OEM和高级电池制造商正在寻求创新的方式,以将使用的锂离子电池材料返回回电气电池供应链。圆形电池经济是目标,但是有几种不同的方法可以实现它 - 有些比其他电池经济更有效,更有说服力。本演讲将比较锂离子电池回收和可持续阴极制造的主要方法,以期朝着提高效率,增加的价值和较低的碳排放量。尽管许多公司说它们“回收”锂离子电池,但近距离的外观揭示了回收能力和输出产品的显着差异 - 有些在经济上比其他产品更具经济吸引力。本演讲将对当今可用的主要电池回收和阴极制造过程进行详细的科学审查。通过圆形镜头观察,我们将检查a)通过冶炼将混合金属合金返回供应链的好处和局限性,b)通过切碎,c将黑色质量返回供应链,c)通过供应链通过盐水返回的供应链,将金属盐返回供应链中,通过供应链返回供应链。观众将了解电池材料中圆形的需求,并将学习如何导航电池回收和阴极制造技术的竞争日益激烈的市场。通过了解可以回收电池材料的各种方式,并可以将各种可以返回到供应链的输出产品,观众将能够为有关电池材料供应链的执行级对话增加价值。