非常适合于隔热和隔音材料。此外,玻璃材料的制造成本非常高,而且还需要长时间的热处理,从而消耗大量的能源。另一方面,通过采用低成本的常压干燥工艺,可以显著节省透明二氧化硅气凝胶的制造成本。然而,二氧化硅气凝胶由于其项链状微结构和弱的颗粒间结合,通常机械性较脆,14 并且在气凝胶材料中保持高隔热性和高光学透明度仍然具有挑战性。15 因此,在表现出低热导率的同时获得透明且机械强度高的二氧化硅气凝胶至关重要。在本研究中,我们报告了一种制造透明隔热二氧化硅气凝胶材料的合成策略,实现了 18 mW m 1 K 1 的低热导率和可见透明度(400 nm 和 800 nm 的广谱透明度为 70%)。溶剂交换过程促进了它们的光学透明度,而疏水表面改性则可抵抗环境压力干燥过程中的孔隙塌陷并保持其结构完整性。高可见光透明度、低热导率、8% 低声强的隔音效果以及加入透明聚合物的可扩展制造展示了它们在透明窗口材料中的潜在应用。同时,与透明二氧化硅气凝胶结合的太阳能接收器可以在 1 太阳辐射下 12 分钟内达到 122 摄氏度,比环境大气中高 200%。透明的工程结构
在过去的十年中,拉曼光谱已被证明是一种强大的光谱方法,有助于了解纳米级复杂而迷人的能量传输世界。人们开发了各种基于拉曼的方法来测量二维材料和其他纳米级结构的热性能。光热拉曼法常用于确定原子级薄材料(如石墨烯和过渡金属二硫属化合物 (TMD))的界面热阻 (R ″ tc ) 和热导率 (k)。[1–4] 该技术同时使用激光加热样品和拉曼信号表征。温度相关的拉曼信号和 3D 热传导模型用于提取热性能测量值。通过焦耳加热的拉曼测温法同样可以探测界面能量传输和热导率;通过用激光加热代替电流加热源,可以使用物理建模和温度相关的拉曼信号来确定 R ″ tc 。 [5,6] 最近,人们设计了另一种综合光热拉曼方法,使用连续波和脉冲激光来测量二维材料的热性能。[7] 该方法通过比较一系列激光光斑尺寸和脉冲持续时间的不同拉曼温度响应来测量单层和多层石墨烯的 k。此外,双激光拉曼测温法和双波长闪光拉曼映射法分别用于测量二维材料和纳米线的热导率。[8,9]
例外点(EPS) - 非遗传系统参数空间中的奇异点,附近的两个特征模型结合的两个具有独特的特性,具有诸如灵敏度增强和手性发射之类的应用。现有的EP激光器的实现在增益培养基中具有静态种群。通过分析全波Maxwell - Bloch方程,我们在这里表明,在激光工作的舒适性非常接近EP时,非线性增益将自发地诱导高于泵阈值的多模式的多模式不稳定性,从而启动了振动的逆逆逆逆逆逆转和基因。通过光谱退化和EP附近模式的空间合并,梳子产生的效率都提高了。这样的“ EP梳子”具有可调的重复率,没有外部调节器或连续波泵的自启动,并且可以通过超紧凑的足迹实现。我们开发了具有振荡倒置的Maxwell - Bloch方程的精确解,将EP梳子的所有时空正常描述为极限循环。我们在数值上以5μm长的增益减肥耦合藻类腔说明了这种现象,并将EP梳子复制速率从20到27 GHz调节。这项工作提供了富含激光行为的严格时空描述,这是由增益介质的非热性,非线性和动力学之间的相互作用产生的。
内部测试结果 Nam JG, Park SG, et al.基于深度学习的胸部X光片恶性肺结节自动检测算法的开发与验证,放射学 2018 Hwang EJ, Park SG, et al.基于深度学习的胸部X光片主要胸部疾病自动检测算法的开发与验证,JAMA Network Open 2019 Hwang EJ, Park SG, et al.胸部X光片活动性肺结核的DLAD算法的开发与验证,临床传染病 2019 Lee JH, Park SG, et al.基于深度学习的胸部X光片上活动性肺结核自动检测算法:在无症状个体系统筛查中的诊断性能,欧洲放射学 2020 Hwang EJ 等。肺活检后气胸监测的深度学习算法:一项多中心诊断队列研究,欧洲放射学 2020 Jang SW 等。基于深度学习的减少胸部X光片上被忽视的肺癌的自动检测算法,放射学 2020 Hwang EJ 等。深度学习在急诊科胸部X光片诊断中的应用,放射学 2019 Kim JH 等。临床验证深度学习算法在急诊科急性发热性呼吸道疾病患者胸部 X 光片中检测肺炎的应用,《临床医学杂志》2020 Hwang EJ 等人。实施基于深度学习的计算机辅助检测系统,用于解读疑似 COVID-19 患者的胸部 X 光片,《韩国放射学杂志》2020
最新一代战斗机采用 270Vdc 电源系统 [1]。这种高压直流电源系统很难用传统断路器保护,因为电流在故障期间不会像交流电源系统那样每周期自动归零两次,因此触点电弧是一个问题。固态功率控制器 (SSPC) 是断路器的固态等效物,不会产生电弧,并且比机械断路器对故障的响应更快 [2]。目前的 SSPC 受到可用功率半导体的限制,只能支持较低的电压和电流 [8,9]。本论文介绍了 SSPC 的设计和实验结果,该 SSPC 使用 SiC 功率 JFET 作为 SSPC 电源开关,将 SSPC 功能扩展到更高的电压和电流,而其空间比 Si 电源开关实际可实现的空间更小。研究从 SSPC 电源开关的热分析开始,这将指导由 Solid State Devices Inc. (SSDI) 使用 SiCED 和/或 Semisouth LLC 的 JFET 制造的 SiC JFET 多芯片电源模块的开发。多个多芯片电源模块将并联以构成 SSPC 开关。制造的器件在静态和动态热性能以及静态和动态电气性能上进行了评估。除了 SiC 模块研究外,还完成了能够在 200ºC 下工作的高压 SSPC 控制电路的详细设计,包括详细分析、建模和模拟、详细原理图和详细图纸。最后,制造并测试选定控制电路的面包板以验证模拟结果。还开发了在 SSPC 应用特有的瞬态热条件下测试 SiC JFET 器件的方法。关键词:SiC、JFET、SSPC、热分析、多芯片
扁平无引线 (QFN) 半导体封装是增长最为稳定的芯片载体类型之一,随着原始设备制造商 (OEM) 努力将更多的信号处理功能放入更小的空间,预计 QFN 封装将继续增长。由于 QFN 封装体积小、尺寸紧凑、输入/输出高、散热性好,因此成为芯片组整合、小型化和高功率密度芯片的热门选择,尤其是汽车和射频市场。与任何封装一样,可靠性至关重要,由于 QFN 封装被广泛接受,OEM、集成设备制造商 (IDM) 和外包组装和测试供应商 (OSATS) 要求继续提高 QFN 封装的可靠性。化学工艺处理铜引线框架的表面,以增强模塑化合物的附着力,并减少芯片封装中的分层,从而提高 QFN 封装的可靠性。这些化学工艺导致铜表面微粗糙化,同时沉积一层耐热薄膜,增强环氧封装材料和引线框架表面之间的化学键合。通常,这种工艺可以可靠地提供 JEDEC MSL-1 性能。虽然这种化学预处理工艺在分层方面提供了更好的性能,但它会给引线框架封装商带来其他挑战。表面粗糙度的增加会加剧芯片粘接粘合剂渗出(环氧树脂渗出或 EBO)的趋势,导致银填充粘合剂分离并对封装质量和可靠性产生负面影响。此外,渗入引线框架表面的任何环氧树脂都会干扰其他下游工艺,例如向下粘合或模塑料粘合。
一项针对复发/难治性 WM 的多中心前瞻性 II 期临床试验对 Venetoclax 进行了研究,结果令人鼓舞,总体反应率为 84%,主要反应率为 81%,非常好的部分反应率为 19%。难治性 WM 的主要反应率低于复发性 WM(50% vs. 95%)。中位随访时间为 33 个月,无进展生存期为 30 个月。(有关这些反应类别的定义,请访问 https://onlinelibrary.wiley.com/doi/10.1111/bjh.12102)。值得注意的是,CXCR4 突变(可降低对依鲁替尼的反应)并不影响治疗反应或无进展生存期。唯一反复出现的严重不良副作用是中性粒细胞减少症,即中性粒细胞数量低于正常值(45%)。中性粒细胞是一种白细胞,有助于抵抗细菌感染。这种副作用包括一次发热性中性粒细胞减少症,其特点是发烧和中性粒细胞减少。在研究过程中,32 名患者中无死亡报告。在该临床试验的中途,无论之前是否使用过 BTK 抑制剂(例如 ibrutinib、acalabrutinib 或 zanubrutinib),维奈克拉都被发现对接受过治疗的 WM 患者是一种有效且可耐受的治疗方法。维奈克拉治疗未出现临床肿瘤溶解综合征(见下文维奈克拉副作用下的解释)、免疫球蛋白 M 爆发、神经病变、继发性癌症或心律失常(心脏以不规则或异常节律跳动的疾病)。
射流冲击冷却被视为高功率电子设备热管理的绝佳选择。然而,它的缺点是高压降损失和远离射流区域的低局部传热系数。尽管据报道回流区是由于夹带而出现的,但是回流尺寸对热行为的影响尚不清楚。在这里,在数值研究中采用带有收敛环形通道的射流冲击散热器,以最大限度地减少微通道中冲击射流带来的不利冷却影响。可实现的 k − ε 湍流模型用于模拟热场和湍流流场(Re = 5,000 至 25,000)。研究发现,小尺度上不同的流动回流区是增强传热速率的原因。虽然在 Re 数较低时,收敛壁面射流冲击散热器的热性能高于其平板壁面散热器,但在 Re 数较高时,热性能结果有利于平板壁面射流冲击散热器。在 Re 数较高时,收敛通道中的流动再循环面积会缩小,因此与平板壁面射流散热器相比,收敛通道的热性能会下降。此外,研究发现,采用更陡的收敛通道会缩小流动再循环区域,导致 Re = 25,000 时压降降低高达 59%。本研究考察了不同 Re 数下流动再循环对射流冲击收敛环形散热器热工水力性能的影响。
离子液体 (IL) 是室温下熔融的有机盐,可用于多种用途。许多 IL,例如 1-乙基-3-甲基咪唑乙酸盐 ([C 2 C 1 Im][OAc]),已被证明可以在预处理过程中从生物质中去除大量复杂的生物聚合物木质素。通过生物途径(例如酶)来增值木质素很有前景,但受到许多用于预处理的 IL 生物相容性低的限制。热稳定酶的发现和酶工程技术的应用已经产生了能够承受高浓度 IL 的生物催化剂。将木质素从废品转化为增值化学品对于未来纤维素生物精炼厂的成功至关重要。为此,我们在水性 [C 2 C 1 Im][OAc] 中筛选了超嗜热菌(嗜热菌)的木质素分解酶漆酶的活性。尽管该漆酶具有嗜热性(T opt > 90 ◦ C),但仅在 2% (w/v) [C 2 C 1 Im][OAc] 中观察到明显的活性损失(> 50%)。动力学研究表明,IL 可以与游离酶和酶-底物复合物结合。对接模拟表明阳离子倾向于与靠近活性位点的区域结合。然后,我们采用合理的设计策略来提高漆酶在 [C 2 C 1 Im][OAc] 中的活性。共进行了 8 次单氨基酸突变;然而,与野生型相比,突变体在 [C 2 C 1 Im][OAc] 中的活性没有显著提高。该研究结果揭示了酶-IL相互作用的复杂性质以及设计生物木质素增值策略时面临的挑战。
无 ( 4 )。------------------------警告和注意事项------------------------------- • 长期血细胞减少症:患者在输注 AUCATZYL 后可能会出现 3 级或更高级别的血细胞减少症,持续数周。监测全血细胞计数 ( 5.3 )。• 感染:监测患者是否出现感染的体征和症状;进行适当治疗 ( 5.4 )。• 低丙种球蛋白血症:监测并考虑免疫球蛋白替代疗法 ( 5.5 )。• 噬血细胞性淋巴组织细胞增生症/巨噬细胞活化综合征:按照机构标准进行治疗 ( 5.6 )。• 超敏反应:监测输注期间的超敏反应 ( 5.7 )。• 继发性恶性肿瘤:在使用 BCMA 和 CD19 定向的转基因自体 T 细胞免疫疗法治疗血液系统恶性肿瘤后,发生了 T 细胞恶性肿瘤。如果在接受 AUCATZYL 治疗后出现继发性恶性肿瘤,请联系 Autolus Inc,电话 1-855-288-5227( 5.8 )。•对驾驶和使用机器能力的影响:建议患者在接受 AUCATZYL (5.2) 后至少 8 周内不要驾驶和从事危险职业或活动,例如操作重型或潜在危险的机械。------------------------------------------不良反应-----------------------------------------最常见的(非实验室)不良反应(发生率≥20%)是:CRS、感染 - 病原体不明、肌肉骨骼疼痛、病毒感染、发烧、恶心、细菌感染性疾病、腹泻、发热性中性粒细胞减少症、ICANS、低血压、疼痛、疲劳、头痛、脑病和出血( 6.1 )。如需报告疑似不良反应,请联系 Autolus Inc(免费电话 1-855-288-5227)或 FDA(电话 1-800-FDA-1088)或访问 www.fda.gov/medwatch ( 17 )。请参阅 17 了解患者咨询信息和用药指南。