估计多体量子系统的整体特性(例如熵或二分纠缠)是一项极其困难的任务,通常需要大量测量或经典后处理资源,而这些资源会随着系统规模的扩大而呈指数增长。在这项工作中,我们解决了通过部分转置 (PT) 矩估计全局熵和混合态纠缠的问题,并表明在假设所有空间相关长度都是有限的条件下,存在有效的估计策略。专注于一维系统,我们在系统密度矩阵上确定了一组近似分解条件 (AFC),这些条件使我们能够根据局部子系统的信息重建熵和 PT 矩。这产生了一种简单有效的熵和纠缠估计策略。我们的方法可以以不同的方式实现,具体取决于如何提取有关局部子系统的信息。我们专注于随机测量 (RM),提供一种实用且常见的测量方案,证明我们的协议只需要多项式多次测量和后处理操作,假设要测量的状态满足 AFC。我们证明 AFC 适用于有限深度量子电路状态和平移不变矩阵积密度算子,并提供数值证据证明它们在更一般、物理上有趣的情况下得到满足,包括局部汉密尔顿量的热状态。我们认为,我们的方法可以实际用于检测当今量子平台中可用的大量量子比特的二分混合态纠缠。
研究在有限温度下存储量子信息且尽量减少主动纠错需求的原理是一个活跃的研究领域。我们在二维全息共形场论中通过量子零能量条件来研究这个问题,我们之前已经展示了量子热力学对这种多体系统施加的限制。我们研究了将逻辑量子比特显式编码为有限温度背景下有限冯·诺依曼熵的两个相似手性传播激发,其擦除可以通过来自无限能量无记忆浴的适当的非均匀和瞬时能量动量流入来实现,从而使系统转变为热状态。全息地,这些快速擦除过程可以用前面描述的广义 AdS-Vaidya 几何来描述,其中不需要假设特定形式的块体物质。我们表明,量子零能量条件给出了删除所需的最小有限温度的分析结果,该温度大于初始背景温度,与 Landauer 原理一致。具体来说,我们找到了擦除大量编码量子比特所需的最低最终温度的简单表达式。我们还发现,如果编码量子比特的局部化间隔短于特定的局部化长度,则快速擦除过程是不可能的,而且对于由中心电荷决定的最佳编码量子比特数量,此局部化长度是最大的。我们估计了针对快速擦除的现实保护的最佳编码量子比特。我们讨论了我们的研究对在有限温度下运行的新型容错量子门结构的可能推广。
摘要 — 在生产高性能计算 (HPC) 数据中心,许多因素(包括工作负载计算强度、冷却基础设施故障和使用节能冷却)都会大幅提高 CPU 温度。与 CPU 热设计相关的研究表明,工作温度的细微变化会严重影响 CPU 的寿命、耐用性和性能。因此,监控和控制 CPU 的工作温度至关重要。在本研究中,我们设计了一种自动且连续的 CPU 热监控和控制方法来维持和控制健康的 CPU 热状态。本研究利用 Redfish 协议监控 CPU 温度,并使用动态电压频率调整来控制温度。我们开发了一个参考实现,并使用 150 个 Raspberry Pi3 节点集群评估了我们的方法。我们在不同场景中执行了广泛的 CPU 热分析。我们分析了 CPU 在室温下 100% 负载下达到最高温度的速度。根据我们的实验,在最低和最高 CPU 频率配置下,100% 负载的 CPU 的温度分别可升至 ∼ 72°C (161.6°F) 和 ∼ 86°C (186.8°F)。我们分析了在八种温度配置下应用热控制对 CPU 的热和频率缩放行为的影响。我们观察到,在较低温度配置(例如 70°C (158°F))下应用热控制是修复过热 CPU 的更好配置。根据所提出的模型,在正常温度下运行的 CPU 将消耗相对较少的能量,提供更高的性能并增强其耐用性。索引术语 —CPU 温度、自动化、HPC、数据中心、Kraken、动态电压和频率缩放、省电、性能、动态热控制、Redfish、DVFS、Kraken、计算集群动态热控制、动态电压和频率缩放、数据中心自动化、高性能计算
经理需要知道如何由于气候变化而减轻流水温度(WT)的上升。这需要确定影响热状态的环境驱动因素并确定干预措施最有效的空间区域。我们假设(i)一组降低热敏感性的环境因素可能会影响极端的热事件,并且(ii)这些因素所起的作用在空间上有所不同。为了检验这些假设,我们(i)确定了哪些环境变量据报道是受影响最大的WT,并且(ii)确定了这些环境变量影响WT的空间尺度。到此为止,多尺度环境变量的影响,即土地覆盖,地形(频道坡度,高度),氢形态学(通道辛格斯特,水位,水位,水位,水位,水位,基地索引)和遮阳条件,对三种模型变量(日热敏感性)进行分析,并在三个模型中进行了热能敏感性,以及热量敏感性) Georges等。(2021)极端事件中每日最大WT的时间热动力学。值是在六个空间尺度上计算的(整个上游集水区和相关的1 km和2 km的圆形缓冲液,以及在流的每一侧,带有相关的1 km和2 km的圆形缓冲液)。该期间被认为是Georges等人确定的夏季期间的17天。(2021)基于WT数据,每10分钟测量7年(2012 - 2018年),在92个测量位点。地点均匀地位于整个Wallonia(比利时南部)水文网络。结果表明,阴影,基本流量指数(地下水影响的代理),水位和流域面积是影响热敏感性的最显着变量。由于拥有有限财务和人力资源的经理只能对几个环境变量作用,因此我们主张恢复和保存植被覆盖范围,以限制水道上的太阳辐射,作为一种具有成本效益的解决方案,以降低热敏感性。此外,由于我们的结果表明,较大的管理量表在降低对极端事件的热敏感性方面,应策略性地促进小空间量表(50 m河岸缓冲区)的管理(50 M河岸缓冲区)。
关于 BESS 锂离子电池储能系统的规划政策指南是一项相对较新的技术。政府的《可再生和低碳能源规划实践指南》由印度住房和社区平准化部(DLUHC,现为住房、社区和地方政府部 (MHCLG))发布,旨在帮助各议会制定可再生和低碳能源政策。2023 年 8 月,规划实践指南 (PPG) 增加了一个新部分,其中包含有关锂离子电池储能系统规划的建议。PPG 表示,电力存储是未来脱碳能源系统的关键要素,有助于平衡电网并最大限度地提高太阳能和风能等间歇性可再生能源的可用产出。据 PPG 称,它还将“推迟或避免昂贵的网络升级和新一代发电容量的需要”。 PPG 指出,那些寻求涉及锂离子电池储能系统开发的规划许可的人必须遵守《2015 年城镇乡村规划(开发管理程序)(英格兰)令》中规定的要求。MHCLG 表示,对于拟开发 1 MWh 或以上电池储能系统的申请人,“我们鼓励他们在向当地规划部门提交申请之前与当地相关消防和救援服务机构接洽”。这是为了确保在提出申请之前能够考虑与电池储能系统的选址和位置有关的事项,“特别是在发生事故时、防止热失控的影响以及紧急服务通道”。热失控是指电池单元进入自热状态的现象,最终导致极高的温度和爆炸。申请人还被鼓励在准备申请时考虑国家消防局长委员会提供的指导,同时 PPG 鼓励地方规划部门在确定申请时考虑相同的指导。 PPG 还讨论了地方当局可以采取哪些措施来确保在确定电池存储设施的规划申请时考虑到潜在风险的问题。它鼓励在决定规划申请之前,在正式的公众咨询期内与当地消防和救援部门进行协商。PPG 指出,这是为了确保消防和救援部门能够“就申请提供意见”并“确定在发生事故时可以采取的潜在缓解措施”,这些措施可以在确定申请时加以考虑。MHCLG 还建议议会将信件直接发送给该地区相关消防和救援部门的消防长官。
无论坍缩物体的质量、电荷和角动量是多少,坍缩的最终状态仅由物体的质量、电荷和角动量来表征。由于黑洞会向渐近观察者隐藏经典信息,所以这仍然是可以接受的。然而,它在半经典背景下的影响却令人担忧,并引起了所谓的信息丢失悖论。[4] 首次研究了经典黑洞背景中量子场的散射。结果表明,在 I − 处制备的初始真空状态将在黑洞几何中演化为未来零无穷大 I + 处的热状态。因此,存在非幺正演化和信息丢失。我们可以在坍缩过程的背景下想象这一点,该过程提供经典背景和在 I − 处在真空中制备的量子态。 I + 处的外态是热态,这假设意味着黑洞正在发射热辐射,这会导致其质量、角动量等减少,并最终导致其完全蒸发。因此,作为坍缩和随后蒸发的最终状态,人们在 I + 处发现黑洞奇点和热辐射。有关坍缩物质的信息丢失了。无毛发猜想在这里的作用是,热态仅由稳态黑洞的非平凡毛发来表征。因此,一种可能的解决办法可能是如 [ 5 ] 中所建议的,黑洞上存在更多的毛发。众所周知,黑洞的质量、角动量和电荷是与规范对称性相关的守恒电荷,当存在边界时,规范对称性就会变成真正的对称性。因此,人们可以通过搜索大于度量等距群的对称性群来寻找毛发。零无穷处渐近平坦时空的例子 [ 6 – 8 ]、渐近局部反德西特时空的例子 [ 9 ],以及对近“视界”对称性的探索 [ 10 – 12 ] 告诉我们,情况确实如此。[ 5 ] 中的提议完全源于零无穷处渐近平坦时空的经验,探索了黑洞视界的对称性。对于 I + ( I − ),对称群(定义为保持度量上的衰减条件的微分同胚)变为无限维,即所谓的 BMS + ( BMS − ),它是超平移的无限维阿贝尔群与 Lorentz 群(或其推广,即 Witt 代数的两个副本 [ 13 ] 或球面上的光滑微分同胚代数 [ 14 , 15 ])的半直积。尽管黑洞视界与 I + 或 I − 相似,但由于零生成器的非亲和性,尤其是在非极值情况下,该群可能无法实现为对称性。然而,超平移的李群理想却是保持基本视界结构的对称性。超平移黑洞可能有两种含义。它可能是近视界超平移 [ 5 ],也可能是作用于全局黑洞解的 I + 和 I − 处的渐近超平移 [ 16 , 17 ]。这两个概念是否是同一个概念还远未可知,正是因为近视界超平移生成器在本体中的扩展可能与 I − 处的超平移生成器不匹配。在这里,我们将