拓扑材料引起了极大的关注,因为它们在宽带和快速的光响应中,尤其是在红外状态下的潜力。然而,这些系统中的高载体浓度通常会导致光生载体快速重组,从而限制了光疗力。在这里,我们证明了MNBI 2 TE 4中的SB掺杂有效地降低了载体浓度并抑制电子孔重组,从而显着改善了可见的中型红外光谱的光电性能。最佳掺杂的MN(BI 0.82 SB 0.18)2 TE 4光电探测器在1550 nm时的响应时间为18.5μs,响应时间为0.795 mA W -1,响应时间为3.02 mA W -1,响应时间为4μm,响应时间为9.0μm。这些值与未居式MNBI 2 TE 4相比,这些值近两个数量级改善。我们的结果重点介绍了乐队工程作为增强基于拓扑材料的光电探测器的红外绩效的有效策略,为高敏性红外检测开辟了新的途径。关键词拓扑绝缘子,红外光电探测器,带工程,VDW材料,光伏效果简介
摘要 - 基于双介质DBR的双介电型微腔发光设备,它们制造了两个不同的结构,并研究了它们的热特性。为了改善热耗散,使用了比SIO 2高得多的热导率的ALN电流构造层和电镀铜散热器。设备的热电阻从923 k/w降至457 k/w,其中一半是用典型使用的SIO 2电流构造层和键合的底物获得的。这是带有双电介质DBR的基于GAN的微型腔发光设备中报告的最低值。温度分布和设备内部的热量。结果表明,沿垂直方向的热传输有效地绕过底部DBR到铜板。这项工作提供了一种有效的方法,可以改善具有双介电DBR结构的基于GAN的微型腔发光设备。索引项 - 微型腔发光设备,热量耗散,ALN电流配置层,电镀铜板。
石墨烯是在二维蜂窝晶格中排列的单层碳原子,由于其出色的热和电性能,引起了人们的重大关注。其高热电导率(约5000 W/m·K)实现有效的散热,使其成为增强电子设备中热管理的理想材料。石墨烯有效地进行热的能力在各种应用中都利用,包括散布器,热界面材料和复合材料,改善了电子产品(例如处理器和LED)的性能和可靠性。除了其热益处外,石墨烯还具有非凡的电导率,电子迁移率达到200,000cm²/v·s。这种特殊的电导率是由于该材料的DELACALIGETINACTRAIGEDI-π电子和最小散射,从而显着增强了电子成分的性能。石墨烯用于导电油墨,晶体管,超级电容器和电池,推动柔性电子,高速晶体管和能量存储技术的进步。尽管有优势,但仍在大规模生产和将石墨烯集成到现有技术中的挑战。需要解决与生产成本,材料质量以及与其他物质兼容性相关的问题。正在进行的研究重点是改善合成技术和探索新的应用,并有望在各个行业中产生变革性的影响。简介石墨烯的优质热和电气性能可在热耗散和电子性能方面进行实质性改进,并可能扩大其应用并增强技术创新。
高放射性废物 (HLW) 和乏核燃料 (SNF) 处置库的安全概念依赖于整个处置库系统容纳和延缓处置放射性库存的能力。处置库系统由天然屏障(围岩、覆盖层)和工程屏障(如岩土屏障(钻孔、巷道和轴封))以及技术屏障(废物形式和容器)组成。在一些国家废物管理计划中,可能为处置库选择具有不同特征的围岩。由于工程屏障系统 (EBS) 应根据废物的特性量身定制并与天然(地质)屏障兼容,因此将有大量不同的工程屏障选项和组合。在这种情况下,容器必须在所有处理过程中直至处置完成提供多种安全功能(容纳、屏蔽、亚临界和放射性库存的充分衰变热耗散)。随后,容器必须根据地质边界条件和设计标准以及未来可能的检索和恢复操作提供这些安全功能。
摘要。尽管对性能有重大影响,但很少研究太阳能电池中的热分布。此外,尽管INGAN太阳能电池的成就仍在实验室研究状态,但提出的工作致力于在细胞中出现的耦合现象的原始结果,这使得有可能强调新的可能的指南,以提高其效率。据我们所知,在文献中发表的INGAN太阳能电池中热耗散的大多数建模结果仅基于1-D模型,而不是3-D模型。因此,当前贡献中提出的结果是通过与Ingan太阳能电池中的热分布相关的Comsol多物理学3-D分析获得的。为此,我们与“半导体模块”,“固体的传热模块”和“ Wave Optics模块”耦合,使我们能够计算震荡 - 读取 - 读取孔加热,总热量,焦耳的速度,焦耳加热载体的浓度,电场的浓度,电场和Ingan Solar Solar Cylar Cyner in Ingan Solar Cellture in Ingan solar Cellture in Ingan Solar结构。这种方法可以通过确定导致性能下降的加热来源来优化设备稳定性。最后,这些模拟的原始结果表明,基于Ingan的太阳能电池在散发温度的潜力方面提供了很大的可能性,更一般而言,其应用兴趣与其良好的热力学行为相关。
随着星载传感器的小型化,预计小型卫星将使用更强大的有效载荷。因此,需要新的热概念来应对日益增加的热耗散和负面影响。本文提出了一种新的热控制概念,以对具有功率耗散问题的小型卫星进行热标准化,使其在热方面不受轨道的影响。这种新的热设计概念是微型机械泵回路 (MPL)。微型 MPL 的设计考虑了立方体卫星及其子系统的要求,从而确保其与小型卫星和各种任务的兼容性。该系统的核心是荷兰航空航天中心 (NLR) 开发的多并联微型泵 (MPMP)。这种泵概念提供了一种低质量、高可靠性的 MPL 解决方案。随后,本文描述了回路和泵的概念,并给出了微型泵的测试结果。Mini-MPL 也在 Matlab 中建模,以支持 MPL 系统设计权衡。本文描述了该模型,并展示了建模结果,并将其纳入了详细的工作流体选择中。最后,通过与传统热设计方案的比较,阐明了该系统的优点和缺点。本文最后展望了进一步的发展和 mini-MPL 应用。
氮化硅陶瓷底物在活性金属悬挂(AMB)底物中起着关键作用,用于电动模块,其应用包括电动汽车(EV)和混合电动汽车(HEV)电动机控制的逆变器。这些基材在功率半导体模块操作过程中具有散热的函数。同时,底物越细,其热扩散率越高,功率半导体模块的操作效率越大。增加的电动汽车和HEV的采用量正在推动针对高功率设计的功率半导体模块的更多使用,从而最终导致对较薄的底物的需求不断增长,这些底物具有很大的热耗散性能。然而,缺乏评估比0.5毫米的底物热扩散性的确定方法,这在确保测量结果的一致性方面引起了挑战。这项联合研究邀请AIST及其对评估方法的广泛了解以及NGK及其先进的陶瓷底物技术,以收集数据以量化初步过程,这会影响底物热扩散率的测量。这将使我们能够验证评估高性能薄底物的方法,这些底物甚至比0.5毫米薄,例如尚未根据现有日本工业标准(JIS)定义的方法,从而有助于高度准确的测量数据和评估方法的未来标准化。
摘要 — 当前,植入式脑机接口 (BMI) 的趋势是增加通道数量,以改进信息传输速率的下一代设备。然而,这会增加有线或无线系统的原始数据带宽,最终影响功率预算(和热耗散)。因此,植入物上的特征提取和/或压缩对于降低数据速率至关重要,但处理能力令人担忧。皮层内 BMI 的一种常见特征提取技术是尖峰检测。在这项工作中,我们通过实证比较了三种硬件高效的尖峰强调器、非线性能量算子 (NEO)、幅度斜率算子 (ASO) 和导数能量 (ED) 以及两种常见的统计阈值机制(使用平均值或中位数)的性能、资源利用率和功耗。我们还提出了一种新颖的中位数近似法来解决中位数算子硬件效率不高的问题。这些都已在可重构硬件 (FPGA) 上实现和评估,以估计它们在最终 ASIC 设计中的硬件效率。我们的结果表明,采用平均阈值的 ED 提供了最高效的硬件(低功耗/资源)选择,而使用中值则具有更高的检测精度和更高的阈值乘数设置稳健性的优势。这项工作意义重大,因为它是首次实现和比较硬件和算法权衡,在将算法转化为硬件实例以设计无线植入式 BMI 之前必须做出这些权衡。
与传统的 2D 计算系统相比,超密集 3D 集成电路(3D IC),例如单片 3D IC(图 1),可以为数据密集型应用带来巨大的能量延迟积(EDP)优势 [1,2]。为了实现这些优势,需要将多层逻辑和存储器(例如,逻辑和/或存储器设备的薄层,以及相关的信号/全局金属布线)以 3D 形式集成,并使用有限长宽比的后端制程(BEOL)层间过孔(ILV)建立超密集(例如,间距 ≤ 100 纳米)垂直连接 [3]。现有的 BEOL 布线结构已经在使用这种纳米级 ILV。3D IC 变得至关重要,因为工艺技术小型化的根本限制使得传统的缩放路径更加困难。但是,必须克服重大的热挑战才能在多个 3D 层上实现高速和高功率计算引擎 [4-5]。如果没有新技术,未来 3D IC 的上层最高温度将大大超过可靠运行所需的上限(例如 [6] 中的 125°C)。我们使用图 1 中的单片 3D IC 来了解 3D 层中的温升和热耗散(详细分析见第 III 部分)。图 1 中的 N 层中的每一层都包含一层高速、高功率硅逻辑器件(例如,计算引擎)和由铜布线和超低κ 层间电介质 (ILD) 组成的 BEOL 层(例如,用于信号布线)。各层通过超密集 ILV 电连接。在某些设计中,每层还存在硅存储器、存储器访问设备和额外的 BEOL。3D IC 由附加的散热器进行外部冷却,散热器将产生的所有热量以散热器比传热系数 h(W/m 2 /K)散发到环境中。最高温度 T j 取决于散热器、环境温度和 N 层的热特性。散热器创新(如 [7])只需散热器上 10°C 的温升(即 h= 10 6 W/m 2 /K)即可消除 1000 W/cm 2 的热量,尽管