摘要。这项工作旨在研究1950 - 2019年期间,ERA5预测ERA5预测ERA5预测的趋势的时间稳定性和可靠性。使用ERA5的分析状态数量研究了趋势的驱动力。估计重新分析数据的趋势可以是挑战,因为观察系统的变化可能会引入时间不一致。为此,讨论了分析增量的影响。对于北大西洋盆地的各个子区域,潜在且明智的热量流量的参数化形式是线性的,以定量地将趋势归因于风速,水分和温度的长期变化。我们的结果表明,来自ERA5的良好的时间稳定性和良好的空气热量在亚巴巴辛尺度及以下预测。区域平均值表明,趋势在很大程度上是由皮肤温度和大气对流的变化驱动的(例如温暖或干燥的空气质量)。还讨论了在发现的模式下,还讨论了所发现的模式的气候变化模式的影响。结果表明,在过去40年中,与NAO相关的Irminger和Labrador Seas的趋势产生了重大影响。最后,我们使用盆地范围的空气热环和观察性海洋热含量估算的趋势,以提供基于能量预算的大西洋子午线翻转循环(AMOC)的趋势估计。北大西洋盆地的面积平均空气热量降低表明,在研究期间,AMOC的下降。然而,盆地范围的频率趋势被认为是人为的,如暂时变化的水分增量所示。因此,确切的变化幅度尚不确定,但是它的符号看起来很健壮,并增加了补充证据,表明AMOC在过去70年中已经削弱了。
抽象地面热通量(G 0)是高纬度区域的地面能量平衡的关键组成部分。尽管由于全球变暖而在控制多年冻土降解中其至关重要的作用,但G 0在全球尺度模型仿真的输出中却很少衡量,并且没有很好地表示。在这项研究中,使用现场测量,全球气候模型和气候重新分析输出的土壤温度序列测试了一个分析传热模型,以在整个季节重建G 0。使用可用的G 0数据(测量或建模)在自由周期中推断地面热通量和模型参数的概率密度函数作为参考。当观察到的G 0不可用时,使用表面热通量(取决于参数)作为最高边界条件的表面热通量(取决于参数)的数值模型。通过比较在几个深度下模拟和测量的土壤温度的分布来验证这些估计值(因此,相应的参数)。在未确定的状态不确定性定量方法的帮助下,开发的G 0重建方法为评估地面热通量的概率结构提供了新的手段,用于区域多年冻土变化研究。
1意大利国家研究委员会(CNR),海洋科学研究所(ISMAR),意大利罗马。2国家高性能计算研究中心,大数据和量子计算(ICSC),意大利5
图 3.4.1-1:虚拟喷嘴配置 17 图 3.4.1-2:液压油理论排放速度 19 图 3.4.1-3:喷火热释放率 20 图 3.4.1-4:喷火火焰长度 21 图 3.4.1-5:喷火火焰发射功率 22 图 3.4.1:火焰与目标平面之间的关系 23 图 3.4.1-6:距喷射火焰 0.50 米处垂直平面的辐射热通量 24 图 3.4.1-7:距喷射火焰 0.75 米处垂直平面的辐射热通量 24 图 3.4.1-8:距喷射火焰 1.00 米处垂直平面的辐射热通量 25 图 3.4.1-9:距喷射火焰 2.00 米处垂直平面的辐射热通量m 距离喷射火焰 25 图 3.4.1-10: 距离喷射火焰 4.00 m 处垂直平面的辐射热通量 26 图 3.4.1-11: 距离喷射火焰 6.00 m 处垂直平面的辐射热通量 26 图 3.4.1-12: 距离喷射火焰 10.00 m 处垂直平面的辐射热通量 27 图 3.4.1-13: 目标热通量与距离 27 图 3.4.2-1: 预测热释放率与池直径 30 图 3.4.2-2: 池火每单位表面积质量燃烧率 31 图 3.4.2-3: 池火增长至峰值热释放率的时间 32 图 3.4.2-4: 池火火焰高度 33 图 3.4.2.1-1: 距离垂直平面 5.5 m 处的辐射热通量来自 JP-4 池火 35 图 3.4.2.1-2: 辐射热通量至垂直平面 5.75 米 来自 JP-4 池火 35 图 3.4.2.1-3: 辐射热通量至垂直平面 6.0 米 来自 JP-4 池火 36 图 3.4.2.1-4: 辐射热通量至垂直平面 8.0 米 来自 JP-4 池火 36 图 3.4.2.1-5: 辐射热通量至垂直平面 10.0 米 来自 JP-4 池火 37 图 3.4.2.1-6: 辐射热通量至垂直平面 15.0 米 来自 JP-4 池火 37 图 3.4.2.1-7: 辐射热通量至垂直平面 20.0 米 来自 JP-4 池火 38 图 4.1-1: 火灾热量释放速率 41 图 4.1-2:隔间气体层温度 42 图 4.1-3:层界面高度 42 图 4.1-4:目标辐射热通量 43 图 4.1-5:目标热通量与离火距离的关系 43 图 4.2.1-1:热释放速率随隔间尺寸变化 44 图 4.2.1-2:不同隔间尺寸的层温度 45 图 4.2.1-3:15x15 米垂直目标隔间的热通量 46 图 4.2.1-4:5x5 米垂直目标隔间的热通量 46 图 4.2.2-1:不同火势大小的对流热释放速率 47 图 4.2.2-2:不同火势大小的辐射热释放速率 47 图 4.2.2-3:稳态热释放速率与火灾直径 48 图 4.2.2-4:不同火灾大小的上层温度 48 图 4.2.2-5:不同火灾大小的下层温度 49 图 4.2.2-6:稳定状态层温度与火灾直径 49 图 4.2.2-7:2.5 米直径火灾的目标热通量 50 图 4.2.2-8:2.0 米直径火灾的目标通量 51 图 4.2.2-9:1.5 米直径火焰的目标通量 51
传热系数(HTC,H)和临界热通量(CHF,Q'CHF)是量化沸腾性能的两个主要参数。HTC描述了沸腾传热的有效性,该沸腾的传热效率定义为热通量(Q'')与壁超热(δTW)的比率,即H = Q' /δTW。此处δTw是沸腾表面和饱和液体之间的温度差。在成核沸腾状态下,热通量随壁过热而增加。但是,当热通量足够高时,沸腾表面上的蒸气气泡过多的核核会阻止液体重新润湿表面,然后在表面上形成绝缘的蒸气膜。这种蒸气膜变成了一个热屏障,可导致墙壁超热和沸腾系统的倦怠大幅增加。从成核沸腾到膜沸腾的这种过渡称为沸腾危机,其中最大热通量为CHF。增强CHF可以实现更大的安全边缘或扩展沸腾系统的操作热通量范围。[5]
Ω 中热能的变化率由单位时间内流过边界 S 的热量决定。在三维空间中,热通量 φ 是一个矢量,其大小 | φ | 表示单位时间内流过单位表面积的热能。在边界 S 上的任何一点 ( x, y, z ),我们都认为其为单位向外的法向矢量 ˆ n 。单位时间内流出区域 Ω 单位表面积的能量由热通量矢量 φ · ˆ n 的向外法向分量决定。请注意,如果 φ · ˆ n > 0,则热通量指向外部(能量流出 Ω)。单位时间内流出边界表面 S 的总能量为 x
随着高度集成的电子产品和同时小型化的趋势不断升级,包括更快的处理器、更多功能和更高带宽,电子产品为了应对尺寸限制和严格的可靠性要求而变得越来越紧凑。结果是元件和电路板层面的热通量不断增加。在过去十年中,平均功率密度和散热率增加了近两倍 [1]。预计商用电子产品的热通量水平超过 100W/cm 2,部分军用高功率电子产品的热通量水平超过 1000W/cm 2,将很快成为一项现实且迫切的挑战。对于用于恶劣环境应用(如国防、汽车和石油勘探系统)的更复杂、更强大的电子产品的需求也在不断增长。恶劣环境电子产品的热管理对于各种电子系统的成功设计、制造和战术操作至关重要,以满足高温、环境、可靠性和成本效益要求。
本研究正在对电动汽车中使用的电池的直接液体冷却系统进行建模。该研究的目的是在不同的参数输入下研究锂离子电池模型的性能,并评估电池热管理系统模型的最佳参数,以保持其峰值性能。SolidWorks和ANSYS用于模拟和模拟电池,而Minitab软件则选择进行统计分析。热通量,入口处的质量流速和电池模型的厚度已选择为模拟的输入。获得的结果表明,随着较高的热通量和质量流量量,传热系数正在增加,但随电池模型的厚度而减小。当热通量变化时,压力下降保持恒定,但随着质量流速而增加,并且与电池厚度成反比。为了进行统计分析,提出了参数的最佳值,以保持电池以最高的传热系数运行,但压力差最低。总体而言,该研究已成功进行并实现了所陈述的目标。