陶瓷硅基涂层是专门为某些金属基材(不锈钢、碳钢、高合金和铸造合金)提供防腐保护而设计和开发的,它是由无机成分的受控熔合过程产生的,旨在在金属基材上形成表面层。传统的涂层工艺包括制备配方(从创新的陶瓷基质开始),将原材料以合适的配方混合以满足涂层件的要求,然后对要涂层的工件进行预处理(通常是喷砂,这是一个简单的步骤),以去除金属表面的杂质,然后使用最合适的技术在工件上沉积陶瓷配方,以确保最佳性能。最常见的应用技术是喷涂、浸涂和流涂(也可以提到电泳沉积和粉末静电)。最后需要进行 700-950 ºC 以上的热处理,以便将陶瓷硅基涂层巩固在金属基材上。
摘要:钨 (W) 和钨合金被视为面向等离子体的部件 (PFC) 的主要候选材料,这些部件必须在温度、中子通量、等离子体效应和辐照轰击等恶劣环境下工作。由于这些技术固有的问题,这些材料很难使用增材制造 (AM) 方法生产。本文回顾了将 AM 技术应用于 W 基 PFC 应用的进展,并讨论了所选制造方法中的技术问题。具体而言,我们重点关注激光粉末床熔合 (LPBF)、电子束熔化 (EBM) 和直接能量沉积 (DED) 在 W 材料中的最新发展和应用,因为它们能够保留 W 作为潜在 PFC 的特性。此外,我们还调查了有关辐照对 W 和 W 合金的影响的现有文献,并讨论了其中这些问题的可能解决方案。最后,本文确定并概述了未来增材制造 W 研究中可能存在的差距。
增材制造 (AM) 在众多行业领域得到快速应用,应用范围广泛,这要求采用方法来表征和降低材料缺陷带来的风险。对于安全关键型应用,了解增材制造中典型的材料特性和工艺缺陷(例如孔隙、未熔合、表面粗糙度等)如何影响组件完整性尤为重要。由于缺乏历史数据、增材制造工艺可能存在变化以及技术发展迅速,理解这些影响变得十分复杂。在疲劳关键型应用中,AM 产品的鉴定、认证和安全持续使用不仅取决于对损伤机制和典型增材制造缺陷相关行为的基本了解,还取决于开发用于预测疲劳寿命和断裂风险的稳健、经过验证的模型和软件。此外,需要评估当前疲劳和断裂标准的适用性,以确定生成必要支持材料数据的标准化差距。
介绍了一种用于增材制造 (AM) 的沉淀硬化 (PH) 不锈钢 (SS) 设计的遗传算法。研究发现,完全马氏体基体是实现最大强度的关键因素,但与早期研究不同的是,还考虑了 AM 独有的原位时效处理,从而促进了 AM 过程中富铜沉淀物的沉淀。将设计理论集成到遗传算法优化框架中,以最大限度地提高强度和可打印性。通过使用激光粉末床熔合 (LPBF) AM 制造新型合金部件,进行了实验概念验证,并将其与商业 LPBFed 17-4 PH SS 进行了比较。结果与设计策略目标一致。设计合金的优异机械性能主要归因于两个因素的结合:沉淀硬化和位错强化。沉淀硬化是提高 LPBF 新型 PH SS 屈服强度的主要原因,其原因是打印过程中位错增殖和湮没导致基体位错密度升高。
摘要:激光粉末床熔合(LPBF)是一种很有前途的金属材料增材制造工艺,其优点是产品设计灵活,可制造各种机械零件。然而,由于金属零件是逐层堆叠的,因此 LPBF 制备的材料具有各向异性的微观结构,这对于材料设计非常重要。本研究从构建方向探究了 LPBF 制备的 18Ni300 马氏体时效钢(MS)的耐腐蚀性能,并研究了热处理和时效对微观结构和耐腐蚀性能的影响。LPBF 中快速冷却形成的亚晶胞提高了 MS 的耐腐蚀性能。因此,构建后的 MS 具有最高的耐腐蚀性能。然而,热处理或时效会消除亚晶胞,导致耐腐蚀性能下降。对于 18Ni300 MS,圆柱形亚晶胞形成并沿着散热方向排列,与建造方向相似;因此,在建造状态的 MS 中发现明显的耐腐蚀各向异性。然而,这种耐腐蚀各向异性会因热处理和时效而减弱,从而消除亚晶胞。
首先,总而言之,尼康计划收购总部位于德国的 SLM,该公司是世界领先的金属增材制造设备(俗称金属 AM)开发商和制造商。我们预计,此次交易所需的总金额为 6.22 亿欧元,约合 840 亿日元。 SLM 在法兰克福证券交易所上市,尼康打算以每股 20 欧元的价格对 SLM 全部流通股发出收购要约。 我们已收到包括 Elliott International, LP 在内的三位 SLM 主要股东的不可撤销承诺,承诺在收购要约中收购其股份。 此外,SLM 监事会和管理委员会也表示支持该收购要约。 SLM 已向全球 150 多家领先公司(包括航空航天和汽车行业)供应了 750 多台采用激光粉末床熔合成型方法的金属 AM。 通过此次交易,尼康致力于成为金属增材制造领域的全球领先企业,提供创新的制造解决方案。
摘要。增材制造 (AM) 是一种先进的方法,可逐层制造复杂零件,直至达到所需的设计。激光粉末床熔合 (L-PBF) 用于生产高分辨率的零件,因为层厚度低。L-PBF 基于激光束和材料的相互作用,其中粉末材料被熔化然后凝固。这发生在 0.02 秒的短时间内,使得整个过程难以实时研究。研究表明,数值方法的发展和模拟软件的使用可以理解激光束和材料的相互作用。这种现象是理解材料在熔化状态下的行为以及 L-PBF 工艺生产的零件的机械性能的关键,因为它与熔化的粉末材料的凝固直接相关。需要在微观和中观尺度上详细研究激光束和材料的相互作用,因为它可以提供更好的理解并有助于开发用于 L-PBF 工艺的给定材料。本综述全面了解了 AM 中使用模拟的背景以及感兴趣的特征的不同模拟尺度。
摘要:Inconel 718 是一种镍基高温合金,由于其高强度和耐腐蚀性能,是航空航天、石油和天然气工业的绝佳选择。IN718 的加工非常具有挑战性;因此,应用增材制造 (AM) 技术是克服这些困难和制造传统技术无法制造的复杂几何形状的有效方法。选择性激光熔化 (SLM) 是一种激光粉末床熔合方法,可用于高精度制造 IN718 样品。然而,工艺参数对制造样品的性能有很大影响。在本研究中,开发了一个预测模型,以获得 IN718 合金 SLM 工艺中的最佳工艺参数,包括激光功率、图案间距和扫描速度。为此,采用具有各种算法的人工神经网络 (ANN) 建模来估计工艺输出,即样品高度和表面硬度。建模结果与实验输出完全吻合,从而证明了 ANN 建模对于预测最佳工艺参数的优势。
我们发现,许多经典概念需要扩展,以适应 AM(特别是激光粉末床熔合)中存在的特定微观结构(晶粒尺寸和形状、晶体结构)和缺陷分布(空间排列、尺寸、形状、数量)。例如,缺陷的 3D 表征变得至关重要,因为 AM 中的缺陷形状多种多样,对疲劳寿命的影响方式与传统生产的部件不同。这些新概念对解决 AM 部件疲劳寿命确定的方法有直接影响;例如,由于仍然缺少缺陷分类和可容忍形状和尺寸的量化,因此必须定义一种新策略,即理论计算(例如 FEM)允许确定最大可容忍缺陷尺寸,并且需要无损检测 (NDT) 技术来检测此类缺陷是否确实存在于组件中。这些示例表明,AM 部件的组件设计、损坏和故障标准以及特性(和/或 NDT)如何完全相互关联。我们得出结论,这些领域的均质化代表了工程师和材料科学家当前面临的挑战。
增材制造/合金设计和材料选择的材料和工艺简介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 定制合金的开发. . . . . . . . . . . . . . . . . . . . . . . 11 熔融金属增材制造中的工艺-结构关系. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Michael Kirka,橡树岭国家实验室缺陷结构. . . . . . . . . . . . . . . . . . . . . . . . 16 热特征 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Joy Gockel,科罗拉多矿业学院 静态性能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 疲劳性能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 与传统制造业的比较 . . . . . . . . . . . . . . . . 26 金属增材制造中的工艺缺陷 . . . . . . . . . . . . . . . . . 30 Scott M. Thompson,堪萨斯州立大学 Nathan B. Crane,杨百翰大学 激光粉末床熔合 . . . . . . . . . . . . . . . . . . . . . . . 30 激光定向能沉积 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 增材制造中的材料建模 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 60 盲建模挑战 . . . . . . . . . . . . . 64 物理驱动模型与数据驱动模型 . . . . . . . . . 64 金属增材制造的零件规模工艺建模 . . . . . . . . . . . . . . . . 67 Kyle L. Johnson、Dan Moser、Theron M. Rodgers 和 Michael E. Stender,桑迪亚国家实验室热建模 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 72