Al 2017 和 Al 2024 Carlson Nailon 1 , MF Mahmod 1,2 * 1 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, MALAYSIA 2 结构完整性和监测研究小组, 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja,马来西亚柔佛州 *通讯作者指定 DOI:https://doi.org/10.30880/rpmme.2021.02.02.101 于 2021 年 8 月 10 日收到; 2021 年 11 月 28 日接受; 2021 年 12 月 25 日在线提供摘要:选择前腿座椅的飞机部件材料需要对其物理性能进行大量研究,例如强度、延展性、耐腐蚀性,这些也会受到材料生产工艺和零件生产工艺的影响。制造飞机前腿座椅的材料多种多样,即铝合金,Al 2017 和 Al 2024。本文对 Al 2017 和 Al 2024 进行了拉伸试验和疲劳试验模拟,分析是在相同条件和负载下使用 Ansys Workbench 进行的。这些测试是使用两个圆柱形狗骨试样按照几何标准完成的;拉伸试验模拟为 ASTM E8-16a,疲劳试验模拟为 ASTM E466-07。拉伸试验和疲劳试验模拟分析是在其中一个试样端部施加 100 kN 力并在另一个试样端部施加固定支撑的情况下进行的。本研究通过拉伸试验模拟得出的结果表明,Al 2024 具有较高的屈服强度和拉伸极限强度,分别为 280 MPa 和 895.67 Mpa。同时,疲劳试验模拟确定 Al 2017 和 Al 2024 的疲劳寿命值相同,均为 1x10^8。在疲劳损伤方面,Al 2024 的疲劳损伤较小,为 4172.2,这意味着其安全系数较低,为 4.7198。因此,在本研究中,Al 2024 强度更高,抗疲劳性能优异。关键词:拉伸模拟、疲劳模拟、Ansys Workbench、铝 2024、铝 2017
Al 2017 和 Al 2024 Carlson Nailon 1 , MF Mahmod 1,2 * 1 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, MALAYSIA 2 结构完整性和监测研究小组, 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja,马来西亚柔佛州 *通讯作者指定 DOI:https://doi.org/10.30880/rpmme.2021.02.02.101 于 2021 年 8 月 10 日收到; 2021 年 11 月 28 日接受; 2021 年 12 月 25 日在线提供摘要:选择前腿座椅的飞机部件材料需要对其物理性能进行大量研究,例如强度、延展性、耐腐蚀性,这些也会受到材料生产工艺和零件生产工艺的影响。制造飞机前腿座椅的材料多种多样,即铝合金,Al 2017 和 Al 2024。本文对 Al 2017 和 Al 2024 进行了拉伸试验和疲劳试验模拟,分析是在相同条件和负载下使用 Ansys Workbench 进行的。这些测试是使用两个圆柱形狗骨试样按照几何标准完成的;拉伸试验模拟为 ASTM E8-16a,疲劳试验模拟为 ASTM E466-07。拉伸试验和疲劳试验模拟分析是在其中一个试样端部施加 100 kN 力并在另一个试样端部施加固定支撑的情况下进行的。本研究通过拉伸试验模拟得出的结果表明,Al 2024 具有较高的屈服强度和拉伸极限强度,分别为 280 MPa 和 895.67 Mpa。同时,疲劳试验模拟确定 Al 2017 和 Al 2024 的疲劳寿命值相同,均为 1x10^8。在疲劳损伤方面,Al 2024 的疲劳损伤较小,为 4172.2,这意味着其安全系数较低,为 4.7198。因此,在本研究中,Al 2024 强度更高,抗疲劳性能优异。关键词:拉伸模拟、疲劳模拟、Ansys Workbench、铝 2024、铝 2017
Al 2017 和 Al 2024 Carlson Nailon 1 , MF Mahmod 1,2 * 1 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, MALAYSIA 2 结构完整性和监测研究小组, 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja,马来西亚柔佛州 *通讯作者指定 DOI:https://doi.org/10.30880/rpmme.2021.02.02.101 于 2021 年 8 月 10 日收到; 2021 年 11 月 28 日接受; 2021 年 12 月 25 日在线提供摘要:选择前腿座椅的飞机部件材料需要对其物理性能进行大量研究,例如强度、延展性、耐腐蚀性,这些也会受到材料生产工艺和零件生产工艺的影响。制造飞机前腿座椅的材料多种多样,即铝合金,Al 2017 和 Al 2024。本文对 Al 2017 和 Al 2024 进行了拉伸试验和疲劳试验模拟,分析是在相同条件和负载下使用 Ansys Workbench 进行的。这些测试是使用两个圆柱形狗骨试样按照几何标准完成的;拉伸试验模拟为 ASTM E8-16a,疲劳试验模拟为 ASTM E466-07。拉伸试验和疲劳试验模拟分析是在其中一个试样端部施加 100 kN 力并在另一个试样端部施加固定支撑的情况下进行的。本研究通过拉伸试验模拟得出的结果表明,Al 2024 具有较高的屈服强度和拉伸极限强度,分别为 280 MPa 和 895.67 Mpa。同时,疲劳试验模拟确定 Al 2017 和 Al 2024 的疲劳寿命值相同,均为 1x10^8。在疲劳损伤方面,Al 2024 的疲劳损伤较小,为 4172.2,这意味着其安全系数较低,为 4.7198。因此,在本研究中,Al 2024 强度更高,抗疲劳性能优异。关键词:拉伸模拟、疲劳模拟、Ansys Workbench、铝 2024、铝 2017
抽象蛋白质工程是合成生物学的关键方面,涉及现有蛋白质序列中氨基酸的修改12,以实现新颖或增强的功能13和物理性能。准确预测蛋白质变异效应需要彻底了解蛋白质序列,结构和功能。深度学习方法在指导蛋白质修饰方面具有出色的性能,可改善16个功能。然而,现有方法主要依赖于蛋白质序列,蛋白质序列在有效地编码氨基酸局部环境的几何方面时面临17个挑战,而18通常在捕获与蛋白质折叠稳定性,内部分子19相互作用和生物功能有关的关键细节方面经常缺乏。此外,在预测蛋白质热稳定性方面的20种方法中缺乏基本评估,尽管它是一种关键的物理特性,在实践中经常研究21种。为了应对这些挑战,本文介绍了一个新颖的22个预训练框架,该框架整合了蛋白质初级23和第三纪结构的顺序和几何编码器。该框架通过24模拟野生型蛋白上的自然选择来指导突变方向,并根据其25个效果来评估变异效应以执行特定功能。我们使用三个基准26评估提出的方法,其中包括300多个深突变扫描测定法。Pytorch 32实现可在https://github.com/tyang816/protssn上获得。33与其他零击28学习方法相比,预测结果在广泛的实验中展示了27个出色的表现,同时又在可训练的参数方面保持最低成本。这项29项研究不仅提出了一个有效的框架,以实现更准确,更全面的30个预测,以促进有效的蛋白质工程,而且还增强了Silico评估中的31系统,以使未来的深度学习模型更好地与经验要求保持一致。
工业化产品的开发产生了在食品中引入添加剂的必要性,而在食品制定中插入新元素时,主要的挑战之一就是保持其自动特征。但是,在使用添加剂时,必须考虑除了感觉方面,营养价值,外观和安全性[1,2]。根据欧洲食品安全局(EFSA),食品添加剂是有意添加到食品配方中以执行一定功能的物质。它们可以被描述为防腐剂,营养添加剂,例如维生素,纤维和氨基酸,调味剂,着色剂和纹理剂等[2]。对有意识的消费,将健康和环境联系起来的日益关注,导致需要用自然添加剂代替合成添加剂[3]。在这种情况下,食品行业探索了使用生物表面活性剂(BS)作为食品添加剂,因为美国环境保护署已批准在食品和其他工业应用中使用某些类型的BS [1]。1。BS,例如脂肽,糖脂和脂蛋白可以从植物中分离或由某些微生物(例如细菌,酵母菌或真菌)产生的植物或产生[4,5]。此外,BS的固有生物降解性和可持续性满足了市场的当前需求[3]。例如,来自链霉菌的糖脂BS。rhamnolipids(rl)来自假单胞菌属。是食品中最受剥削的BS之一。使用BS作为食物添加剂的另一个优势包括它们对温度变化,酸性培养基和高盐度的稳定性,这是食物环境中观察到的典型条件[6]。在较宽的pH范围内(5.0和9.0之间)和NaCl浓度(1.5%w / v)提出了稳定性,从而可以维持分子结构和物理性能,从而影响最终产品的质量[7]。此外,BS结构的多样性允许根据所需的应用确定生物分子的选择[8]。除了其表面活性特性外,BS据报道还可以改善面团的质地和稳定性,以避免将油基产品分离,帮助混合成分,改善粘度并通过更换脂肪来降低能量价值[1,8]。它们已被包括在面粉,披萨和蛋糕,黄油奶油以及新鲜或冷冻产品的基于面粉的面团中。更具体地说,在冰淇淋和面包店中,RL可用于一致性控制,脂肪稳定和减少衰老[1]。文献还报告了将BS用作食品添加剂作为芳香油溶解
BaTiO 3 化合物:DFT 研究 A. Sohail a、SA Aldaghfag b、MKButt a、M. Zahid c、M.Yaseen a,*、J. Iqbal c、Misbah c、M. Ishfaq a、A. Dahshan d、ea 自旋光电子学和铁热电 (SOFT) 材料与器件实验室,巴基斯坦费萨拉巴德 38040 农业大学物理系 b 沙特阿拉伯利雅得 11671 诺拉公主大学 (PNU) 科学学院物理系 c 巴基斯坦费萨拉巴德 38040 农业大学化学系 d 沙特阿拉伯艾卜哈国王大学科学学院物理系 e 埃及塞得港大学科学学院物理系 钒 (V) 掺杂对采用自旋极化理论研究了不同浓度(x = 12.50%、25%、50%、75%)对BaTiO 3 钙钛矿物理性能的影响。两种状态的电子能带结构(BS)表明,Ba 0.875 V 0.125 TiO 3、Ba 0.75 V 0.25 TiO 3、Ba 0.5 V 0.5 TiO 3 和Ba 0.25 V 0.75 TiO 3 化合物均为半金属铁磁(HMF)材料。结果表明,V 对Ba 1-x V x TiO 3 化合物的HMF行为起着重要作用。此外,磁特性证实了所有所述化合物的磁矩的整数值。在光学性能方面,还计算了反射率R(ω)、光吸收α(ω)、介电函数ε(ω)、消光系数k(ω)和折射率n(ω)。完整的光学参数集表明上述材料可用于可见-紫外光电子器件。基于半金属 (HM) 的结果,V 掺杂的 BaTiO 3 可用于自旋电子学应用。 (2021 年 6 月 20 日收到;2021 年 10 月 5 日接受) 关键词:半金属铁磁体、态密度、磁矩、光学参数 1. 简介在过去的十年中,HMF 材料因其在隧道结、光电子学和磁性器件中的应用而引起了人们的广泛关注。此外,HMF 材料在自旋电子学中起着重要作用,因为这些材料包含两种自旋态,一种自旋版本表现出金属行为,而另一种自旋态表现得像半导体或绝缘体。HMFM 化合物,例如 PtMnSb 和 NiMnSb Heusler 合金,最初由 Groot 等人 [1- 4] 报道。
稳定地制作书目,数据汇编,而不是进行NES,测量自己,面对和建议,实验性测量 - 如果他的蚂蚁向自己保证自己和其他产出。他找到了所有相关结果的一系列卷。这些备注构成的常规范围更频繁,而不是其中之一,在一个或i %%之后,搜索数据停止。这些卷是一个结果,或者在搜索者认为他在Theiseles中取得巨大成就之后。ie-已经花费了足够的时间。现在\ thcir生产的Quiring the the kno壁架的结合外观,科学家或工程师以及数十个专门专家的技能。\ ho需要这样的数据可以认为自己的属性属性很幸运,他有一个sir-e soturce to t t t t t t t t;为每个科学家和工程师的感激之情将节省数千个小时的搜索时间,他们使用THCST编制的数据。无数的测量重复是避免的单个非技术公民,而美国的数十亿美元投资也受到了危险,因为在研究方面也保留了很多。有助于他的ho \%的科学技术。该任务并未以属性为依赖于这些数据的使用结束。的确,这些体积的影响。仍然需要数据表明对这一重要性的广泛认识的批判性评估。可以报告的烟气值?为什么差异结果仅仅是不同实验者获得的财务赞助商列表的领导?什么是热物理性能研究中心; DTCTECT的系统错误来源可能会影响[IE美国或ESEN所有测量的技术行业的某些领导者吗?\ aluc可以是dcriscd,联邦政府的机构是各种代表的“推荐”数字。这些问题在实验中进行的实验测量很难回答,要求最简单的人具有许多潜在的应用。他们可能会表明该领域专家的判断。虽然使用一个CB“ CK”理论,或者帮助本系列中的卷数确实包含化学制造厂,或者是为了批量生产和推荐的数据,这些数据使这些热交换器的特征仍然是在少数群体中仍然是弧形中的热交换器的特征。现在的数据是Beine核电厂。由TPRC的工作人员所支持的科学进步和更多I | Etenskelo的技术要求,他在国家标准开放文献的不可或缺的一部分中发表了他发表的一部分,以便其他人可以使用它们。for-参考数据系统(NSRDS)。整理进步的任务,任何一个国家标准参考数据系统中的有用数据都不是在整个组织中散布在整个组织中,并运行了一项全面的计划,向整个WSORLD的批判性评估数据的准备编辑中发表的技术期刊的沙子。在MIO中,字段,50%的物质特性。NSRDS的工作不超过三十或四十多名,由国家标准局任命,但在TPRC的情况下,其领域在联邦科学委员会的指令下
自从石墨烯 (tBLG) 被发现以来,各种新奇的物理现象被揭示出来,例如独特的电子特性。 [3] 特别是,根据扭曲角度 (θ),具有低θ(1.1至5°)的tBLG表现出不同的物理特性,例如莫特绝缘,超导和异常导电行为,这些特性引起了更多的关注。 [4] 此外,tBLG还被发现在电化学,手性和慢等离子体中发挥着重要作用。 [5] tBLG已成为探索物理性质和寻找新应用的有力模型。 因此,可控制备θ范围为0至30°的高质量tBLG是一项艰巨的挑战。 目前,tBLG的制备主要依赖于人工堆叠的方法,例如堆叠单层石墨烯和折叠单层石墨烯。 [6] 但多次转移过程形成的污染和褶皱不可避免地影响tBLG的耦合质量,降低其固有的物理性能。此外,在超高真空条件下,通过热Si升华在氢刻蚀的6H-SiC(000-1)衬底上制备了tBLG。[7] 但这种方法成本不高,并且需要复杂的石墨烯转移程序。化学气相沉积(CVD)被认为是一种制备高质量石墨烯的简便、可扩展的方法[8],其中Cu和Ni被广泛用作直接生长石墨烯的基底。然而,由于Cu中碳含量低,除非采用复杂的工艺,否则很难以Cu为催化剂制备多层石墨烯。[9] 此外,虽然已经利用Cu-Ni合金作为基底来控制石墨烯层的生长,但是很难打破AB堆叠石墨烯的对称性来形成扭曲石墨烯。[10] 最近,Sun等人[11] 在石墨烯层转移过程中,引入了碳和碳键,从而实现了石墨烯的转移。报道了一种在低压 CVD 系统下引入气流扰动的异位成核策略,用于在 Cu 箔上生长石墨烯畴。[11] 因此,迫切需要找到一种简单的方法来制备具有大扭曲角度范围窗口的高质量石墨烯畴,这对于探索石墨烯畴的独特性能非常关键和必要。在本文中,我们开发了一种在环境压力下在液态 Cu 基底上制备石墨烯畴的简便方法。在高于固态 Cu 熔点(1083 ° C)的生长温度下,在液态 Cu 表面生长的石墨烯畴保持对齐取向。通过调节生长温度,对齐状态被打破,在液态 Cu 上生长的石墨烯畴在表面下移动和旋转
纳米纤维素是指纳米级至少具有一个维度的纤维素材料。It is the most abundant natural polymer on Earth, extracted from plants termed plant cellulose ( Yadav et al., 2021 ), produced by microbial cells called bacterial cellulose (BC) or bacterial nanocellulose (BNC) ( Ul-Islam et al., 2021 ), and synthesized enzymatically such as by the cell-free enzyme systems, named as bio-cellulose ( Ullah等人,2015年; Kim等人,2019年)。在过去的几十年中,纳米纤维素的不同形式,包括纤维素纳米晶体(CNC),纤维素纳米纤维(CNF)和BNC,由于其丰富性,可再生和物理上的高表面和物理性能,并引起了人们对创新材料的发展的极大关注亲水性,可可性,多功能性和出色的生物学特征(生物相容性,生物降解性和无毒性)。可以通过添加其他天然和合成聚合物,纳米材料,粘土和其他材料以及通过掺入其他官能团(例如肽)来调整这些特性(Malheiros等,2018)。与CNC和CNF不同,可以通过改变产生纤维素的微生物细胞的生长和培养条件来调整BC的结构特征(Ullah等,2016)。纳米纤维素的表面化学,孔隙率,纤维取向和物理结构可以在宏观,微观甚至纳米级进行控制。此外,纳米纤维素还具有有限的生物相容性和光学透明度。以凝胶,薄片,膜,膜,膜,颗粒,纤维,纤维,纤维,纸张,管子,胶囊,海绵,层压和涂料的新颖和涂料的新颖和涂料应用在食品中(Cazón和Vázón和Vázquezquezquez,20221; Du等人,2019年),伤口敷料(Mao等,2021; Wang等,2021),药物输送(Li等,2018; Raghav等,2021),3D印刷的生物联系(McCarthy等人(McCarthy等)(McCarthy等,2019; 2019; Fourmann et al。,2021年),远处的远处(Fareenge),远处的Shereng al al al an。 Al。,2019年),膜过滤器(Yuan等,2020),纺织品(Salah,2013),柔软的显示器(Fernandes等,2009),面罩(Bianchet等,2020)等。全球环境降解问题,自然能源的耗尽,与健康相关的问题和其他人类需求极大地将与材料相关的研究推向了从可再生资源(即纤维素,半纤维素,木质素,木质素)和微生物(即(I.E)(即bnc,bnc)进行材料的材料的材料(即纤维素,半纤维素,木质素),用于使用各种聚合物材料的使用。尽管从此类来源获得的纳米纤维素具有独特的特征,但它不具有抗菌活性,抗氧化活性,电磁特性和催化活性等特征,这是其专业应用所需的。植物纤维素虽然廉价来源,但需要复杂的提取程序和合成后处理
科学可以造福社会的其他方式。1913 年,在俄亥俄州克利夫兰,五个人成立了一家公司,致力于应用相对较新的科学原理来改善金属的物理性能。由于改良钢是其主要产品,因此该公司被命名为“钢铁改良公司”。SIFCO 三年后,即 1916 年,钢铁改良公司与隔壁的“森林城机器公司”合并。森林城机器的主要制造工艺是锻造,合并为热处理公司增加了锻造能力。该公司更名为“钢铁改良和锻造公司”。(SI .F.CO.)。1917 年,美国陆军通信兵装备部在俄亥俄州代顿市的麦库克机场建立了新的飞机工程部总部,这是一战时期的实验工程设施。戈登·巴特尔资助布洛克兄弟在芝加哥建立内陆钢铁公司; 1917 年,他和 Frantz 将哥伦布钢铁厂卖给了美国轧钢厂——1948 年更名为 Armco Steel Corporation,现在是 AK Steel Holding Corporation 的一部分。然而,1918 年,他的父亲 John 去世,给 Gordon 留下了近 500 万美元的遗产。Gordon 回到俄亥俄州哥伦布市,并向所有朋友提出了成立研究实验室的想法。与此同时,他是两家钢铁公司的总裁,也是另外三家公司的董事。1923 年,他因阑尾切除术后的并发症去世,年仅 40 岁。他的实验室从未建成,但幸运的是,他留下了遗嘱!1922 年,Steel Improvement 成功锻造了 MONEL 金属。他们制造了“STILL-PLUGS”产品,这是一种用于炼油厂的零件。由于这些零件在恶劣的环境中运行,因此被大量使用。到目前为止,STILL-PLUGS 都是用一种称为 MONEL 金属的镍合金铸造的。 Steel Improvement 凭借其冶金和锻造技术成功锻造了这些部件,大大延长了它们的使用寿命。这使该公司比那些怀疑镍基合金是否可锻造的竞争对手更具优势。为“新泽西标准石油公司”(即“埃克森”)生产的样品订单非常成功,Steel Improvement 很快就开始为美国各地的炼油厂生产止回塞。1923 年第一台阴极射线管 – AT&T/贝尔实验室,JB Johnson Gordon Battelle 于 1923 年 9 月 21 日手术后去世。在他的遗嘱中,他成立了巴特尔纪念研究所,这是一家非营利组织,将开展研究以造福工业和人类,并确保科学技术得到应用。他的遗产中的钱以及他母亲 Anne Battelle 遗赠的钱创建了巴特尔纪念研究所。 1923 年 7 月 2 日——美国海军研究实验室 (NRL) 成立——华盛顿特区从 1886 年到 1923 年,俄亥俄州人开发了飞机、加法机、制瓶机、商业胶印机、汽车轮胎、自动交通信号灯和吸尘器,为几代俄亥俄州人创造了价值数十亿美元的全球市场和就业机会。沃伦·G·哈丁总统与巴特尔有什么关系?他是巴特尔家族的朋友,被选为巴特尔最初的董事会成员。董事会成员还有安妮·诺顿·巴特尔、两位实业家和一位律师。巴特尔的董事哈丁总统也于 1923 年去世,因此任命了两位新董事。 1924 联合银行公司成立于 1924 年 8 月 4 日,由荷兰鹿特丹的 Bank voor Handel en Scheepvaart NV 全资拥有。 1924 联邦-莫古尔公司由 Muzzy-Lyon(莫古尔金属)和联邦轴承和衬套合并而成,成为巴氏合金和青铜的主要供应商。 1925 1925 年,亚瑟·柯林斯首次赢得了全国赞誉,因为他与格陵兰科学考察队保持了可靠的通信。当时年仅 15 岁的他用手工制作的收音机完成了这一壮举。 巴特尔于 1925 年 3 月 27 日在哥伦布开始工作。哥伦布建造了一栋建筑,并于 1929 年夏天开业,当时有 20 名员工和