1 土耳其科尼亚塞尔丘克大学药学院药物化学系 * 通讯作者电子邮件:kucukogluk35@hotmail.com 要点 人类谷氨酰胺环化酶 (hQC) 有两种同工型,即分泌型 QC (也称为 sQC) 和高尔基定位型 QC (也称为 isoQC 或 gQC)。 hQC 通过释放氨或水介导 N 端谷氨酰胺或谷氨酸残基的环化。 在某些疾病中,QC 的分泌水平会增加,例如阿尔茨海默氏症 (AD)、亨廷顿氏病 (HD)、黑色素瘤、甲状腺癌、动脉粥样硬化的快速形成、化脓性关节炎。 近年来,发现抑制 QC 的新药被认为是预防和治疗许多生理问题和疾病的重要方法。 已发现具有咪唑骨架的化合物具有抑制 QC 的潜力。这些药物中最引人注目的一种是瓦罗谷氨酸司他,目前正处于阶段研究中。 ARTICLEINFO 收稿日期:2022 年 5 月 21 日 接受日期:2022 年 6 月 25 日 发表日期:2022 年 7 月 15 日 关键词:阿尔茨海默氏症淀粉样蛋白β谷氨酰胺环化酶焦谷氨酸修饰瓦罗谷氨酸司他
• 在 Caris Life Sciences(亚利桑那州凤凰城)使用下一代测序对 CRC(N = 15,285)、EJC(N = 3,276)和 GA(N = 2,420)肿瘤进行 DNA(592 个基因或全外显子组)和 RNA(全转录组)检测。• 通过 IHC 评估 PD-L1+ 表达(22C3:TPS ≥ 1% [CRC] 或 28-8:≥ 2+,≥ 80% [EJC,GA])。• 使用 IHC 和 NGS 组合评估缺陷错配修复/微卫星不稳定性高(-MSI,稳定:-MSS)。• GUCY2C -高(H)和 -低(L)(每百万转录本,TPM)分别针对每个分子定义的亚型定义为上四分位数和下四分位数。• 通过 QuantiSEQ 估计细胞浸润。适当时应用 Mann-Whitney U 和 χ2/Fisher 精确检验(p < .05,根据多重比较进行调整)。• 从保险索赔中获得现实世界的总生存期 (OS) 和自开始 ICI 以来的生存期,并计算分子定义的患者的 Kaplan-Meier 估计值。
树突棘中肌动蛋白细胞骨架动力学的调节对于学习和记忆形成至关重要。因此,肌动蛋白细胞骨架通路缺陷是多种脑部疾病(包括阿尔茨海默病)的生物学特征。本文,我们描述了一种由环化酶相关蛋白 2 控制的新型突触机制,该蛋白是结构可塑性现象所必需的,在阿尔茨海默病中完全被破坏。我们报告称,通过其 Cys 32 形成环化酶相关蛋白 2 二聚体对于环化酶相关蛋白 2 与辅酶蛋白结合以及肌动蛋白周转非常重要。Cys 32 依赖性环化酶相关蛋白 2 同源二聚化和与辅酶蛋白的结合由长期增强作用触发,并且是长期增强诱导的辅酶蛋白易位到棘突、棘突重塑和突触传递增强所必需的。这种机制在阿尔茨海默病患者和 APP/PS1 小鼠的海马中特别受到影响,但在额上回中没有受到影响,其中环化酶相关蛋白 2 下调,环化酶相关蛋白 2 二聚体突触水平降低。值得注意的是,阿尔茨海默病患者的脑脊液中环化酶相关蛋白 2 水平显著升高,但在额颞叶痴呆患者中没有升高。在阿尔茨海默病海马中,cofilin 与环化酶相关蛋白 2 二聚体/单体的关联发生改变,并且 cofilin 在脊柱中异常定位。总之,这些结果为阿尔茨海默病中存在缺陷的结构可塑性机制提供了新的见解。
本文由 Jefferson Digital Commons 免费提供给您,供您开放访问。Jefferson Digital Commons 是托马斯·杰斐逊大学教学与学习中心 (CTL) 的一项服务。Commons 是杰斐逊书籍和期刊、同行评审的学术出版物、大学档案馆的独特历史收藏和教学工具的展示平台。Jefferson Digital Commons 让世界各地的研究人员和感兴趣的读者了解和掌握杰斐逊奖学金的最新进展。本文已被 Jefferson Digital Commons 的授权管理员接受,将收录在药理学和实验治疗学系教师论文中。如需更多信息,请联系:JeffersonDigitalCommons@jefferson.edu。
摘要:赭曲霉毒素 A (OTA) 是一种众所周知的霉菌毒素,广泛分布于食品和饲料中。真菌基因组测序对于识别已知和新化合物的次级代谢物基因簇非常有用。对 A. steynii、A. westerdijkiae、A. niger、A. carbonarius 和 P. nordicum 中 OTA 生物合成簇的比较分析表明,在五个结构基因 (otaA、otaB、ota、otaR1 和 otaD) 中,OTA 簇的组织具有高度的同源性。此外,最近对黑曲霉 OTA 产生菌进行的详细比较基因组分析发现了一个环化酶基因 otaY,它位于 otaA 和 otaB 基因之间的 OTA 簇中,编码的预测蛋白质与 SnoaL 的结构域高度相似。这些蛋白质已被证明能催化链霉菌中产生的聚酮抗生素生物合成中的闭环步骤。在本研究中,我们证明了在 OTA 允许条件下 A. carbonarius 中环化酶基因的上调,这与其他 OTA 簇基因的表达趋势及其在 OTA 生物合成中的作用一致,即通过完全基因缺失。我们的研究结果首次指出了环化酶基因参与了 OTA 生物合成途径。它们代表着对 A. carbonarius 中 OTA 生物合成分子基础的理解向前迈出了一步。
类似的小分子CGMP是GC活性的产物,是动物中的另一个关键第二信使(16)。通过审查的序列分析,我们发现了一个相对保守的GC基序(17),与先前表征的AC基序(15)相邻,在TIR1/AFB的C末端区域(图1a)。为了测试TIR1/AFB生长素受体的潜在GC活性,我们使用了从SF9昆虫细胞中纯化的HIS-GFP-FLAG-TIR1,GST-AFB1以及GST-AFB5蛋白纯化了30
• LH 诱导的 NPR2 去磷酸化可能不是由 PPP 家族磷酸酶活性的变化介导的。 • GSK3A/B 是 NPR2 调节位点的候选激酶。 • LH/PKA 信号传导使 GSK3A/B 上的抑制位点磷酸化。 • GSK3 的抑制剂会导致 NPR2 去磷酸化和 NEBD。 未来方向 • 使用 GSK3A(全局);GSK3B(颗粒特异性)敲除小鼠来测试 GSK3 是否是维持 NPR2 磷酸化所必需的。 • 使用 GSK3A-S21A/S21A;GSK3B-S9A/S9A 12 突变小鼠来测试 GSK3A/B 磷酸化是否是 LH 诱导的 NPR2 去磷酸化和减数分裂恢复所必需的。
CRISPR/Cas9 基因组编辑是一种现代生物技术方法,用于改良植物品种,仅改变特定品种的一个或几个性状。然而,由于缺乏对关键基因的了解、幼苗期较长以及特定品种的整株植物难以再生,这种技术不能轻易用于改良柑橘果实的品质性状。在这里,我们介绍了一种基因组编辑方法,目的是生产果实中同时含有番茄红素和花青素的柑橘幼苗。我们的方法采用双单向导 RNA (sgRNA) 定向基因组编辑方法来敲除果实特异性的 β-环化酶 2 基因,该基因负责将番茄红素转化为 β-胡萝卜素。两个 sgRNA 同时靶向该基因以产生大量缺失,并在两个 sgRNA 靶标中诱导点突变。农杆菌 EHA105 菌株用于转化五种不同的花青素甜橙(属于 Tarocco 和 Sanguigno 品种组)和“Carrizo”枳橙(一种柑橘砧木)作为柑橘转化的模型。在目标区域测序的 58 个小植株中,86% 成功编辑。最常见的突变是缺失(从 -1 到 -74 个核苷酸)和插入(+1 个核苷酸)。此外,在六个小植株中发现了一个新事件,包括两个 sgRNA 之间区域的倒置。对于发生单个突变的 20 个小植株,我们排除了嵌合事件。小植株在营养组织中没有表现出改变的表型。据我们所知,这项工作是使用基因组编辑方法潜在改善柑橘水果品质性状的第一个例子。
肺动脉高压 (PAH) 是一种严重且进行性疾病,在目前可用的治疗方法下生存前景有限。自 2022 年欧洲心脏病学会和欧洲呼吸学会肺动脉高压指南发布以来,已经出现了大量临床证据,支持在第 7 届世界肺动脉高压研讨会 2024 和随后的论文中提出的 PAH 新治疗算法。关键更新包括引入 sotatercept 作为二线治疗,从而修订了最大限度药物治疗的定义,现在涵盖四组治疗药物(磷酸二酯酶 5 抑制剂/可溶性鸟苷酸环化酶刺激剂、内皮素受体拮抗剂、前列环素途径药物和 sotatercept),而不是三组(磷酸二酯酶 5 抑制剂/可溶性鸟苷酸环化酶刺激剂、内皮素受体拮抗剂、前列环素途径药物)。其他创新之处包括取消了针对心肺合并症患者的单独治疗途径,转而采用个性化治疗方式,将初始患者评估风险类别从 3 个减少到 2 个,并将治疗开始后的随访间隔从 3-6 个月缩短到 3-4 个月。本综述介绍了这些进步,并强调了在临床实践中广泛实施这些进步的必要性。最后,我们介绍了八个中欧和东欧国家在治疗肺动脉高压方面面临的新机遇和挑战。
结果:在心室编程刺激期间,DB/DB和HFHS喂养的小鼠显示出VT和T-WAVE替代品的增加。这些小鼠的心肌细胞表现出早期造影后的表现。 这两种模型均表明对副交感神经抑制的心率反应降低,表明自主神经功能障碍。 CGMP介导心脏副交感神经刺激,在DB/DB和HFHS喂养的小鼠的LV中降低。 相反,用可溶性鸟苷酸环化酶刺激(Riociguat)或磷酸二酯酶5抑制(sildenafil)降低VT诱导性的CGMP增强。 PKG1 lzm小鼠具有正常的自主响应性,但VT诱导性过高。 dB/db,HFHS和LZM小鼠分别表现出多活化的心肌糖原合酶三酶3βGSK3)。 此外,用TWS119抑制GSK3废除了这些小鼠的诱导VT。 舒张性胞质Ca 2+的重新摄取坡度在所有模型的心肌细胞中降低,而TWS119的GSK3抑制作用却反转了这种效果。 在HFHS-FED和LZM小鼠中抑制肌胞浆/内质网ca 2+ ATPase 2A-介导的Ca 2+再摄取的磷酸/磷酸磷脂(PLB)。心肌细胞表现出早期造影后的表现。这两种模型均表明对副交感神经抑制的心率反应降低,表明自主神经功能障碍。CGMP介导心脏副交感神经刺激,在DB/DB和HFHS喂养的小鼠的LV中降低。 相反,用可溶性鸟苷酸环化酶刺激(Riociguat)或磷酸二酯酶5抑制(sildenafil)降低VT诱导性的CGMP增强。 PKG1 lzm小鼠具有正常的自主响应性,但VT诱导性过高。 dB/db,HFHS和LZM小鼠分别表现出多活化的心肌糖原合酶三酶3βGSK3)。 此外,用TWS119抑制GSK3废除了这些小鼠的诱导VT。 舒张性胞质Ca 2+的重新摄取坡度在所有模型的心肌细胞中降低,而TWS119的GSK3抑制作用却反转了这种效果。 在HFHS-FED和LZM小鼠中抑制肌胞浆/内质网ca 2+ ATPase 2A-介导的Ca 2+再摄取的磷酸/磷酸磷脂(PLB)。CGMP介导心脏副交感神经刺激,在DB/DB和HFHS喂养的小鼠的LV中降低。相反,用可溶性鸟苷酸环化酶刺激(Riociguat)或磷酸二酯酶5抑制(sildenafil)降低VT诱导性的CGMP增强。PKG1 lzm小鼠具有正常的自主响应性,但VT诱导性过高。dB/db,HFHS和LZM小鼠分别表现出多活化的心肌糖原合酶三酶3βGSK3)。此外,用TWS119抑制GSK3废除了这些小鼠的诱导VT。舒张性胞质Ca 2+的重新摄取坡度在所有模型的心肌细胞中降低,而TWS119的GSK3抑制作用却反转了这种效果。在HFHS-FED和LZM小鼠中抑制肌胞浆/内质网ca 2+ ATPase 2A-介导的Ca 2+再摄取的磷酸/磷酸磷脂(PLB)。