劳拉·阿玛雅·埃尔南德斯 斯坦福 Bio-X Bowes 研究员 干细胞生物学和再生医学 导师:Howard Chang(皮肤病学和遗传学)和 Bali Pulen dran(病理学和微生物学与免疫学) 具有双抗原/佐剂能力的环状 RNA 的体外转录用于疫苗开发 劳拉的项目结合了基因工程和免疫学,以解决疫苗反应原性和实现足够效力和功效的挑战。她将设计一种新颖的免疫策略,以环状 RNA(circRNA)作为免疫原和抗原。利用“外来”环状 RNA 在体内激活记忆反应的内在能力,劳拉将设计出也能翻译蛋白质的环状 RNA,以再生针对目标抗原的细胞免疫。劳拉将通过免疫研究来验证这项工作,以测试基于 circRNA 的疫苗的效力和持久性,希望改进它们以供将来使用。
摘要 环状RNA(CircRNA)是最近发现的一类竞争性内源性RNA,具有通过microRNA吸收来控制基因表达的能力。关于环状RNA在癌症发展中的潜在作用的研究有很多。最近,研究描述了环状RNA在癌症中的重要作用,表明它们作为致癌基因促进癌症发生或作为肿瘤抑制因子减少疾病的发生。最近发现的环状RNA adam9被认为参与了包括癌症在内的多种生理和病理过程。从这个方面来看,多种人类恶性肿瘤中都发现了Circ-ADAM9的异常表达,这表明Circ-adam9在肿瘤发生中起着重要作用。本综述总结了最近对circ-adam9在不同癌症中的作用的研究,并讨论了其作为新型生物标志物的潜在预后、诊断和治疗价值。
RNA 测序技术的最新进展使我们能够发现一种新的 RNA 物种,即环状 RNA(circRNA;图 1)。环状 RNA 已被确定为自然存在的广泛且多样的内源性非编码 RNA 家族,它们可能调节哺乳动物的基因表达(Huang 等人,2017 年),并因神经退行性疾病和癌症而受到干扰(Chen 等人,2016 年)。它们是异常稳定的 RNA 分子,具有细胞类型或发育阶段特异性的表达模式。已鉴定出数千种环状 RNA,其中大多数研究测序了大脑和疾病组织样本。然而,迫切需要了解环状 RNA 的表达模式及其在外周、非大脑、健康组织中的特性,不仅在人类中,而且在用作复杂疾病研究实验模型的其他哺乳动物物种中也是如此。为了应对这一挑战,该项目旨在研究来自三种哺乳动物物种(包括人类、猕猴和小鼠)的十种不同外周组织类型的环状转录组景观。
使用外源性向导 RNA 招募内源性腺苷脱氨酶来编辑细胞 RNA 是一种有前途的治疗策略,但使用当前的向导 RNA 设计,编辑效率和持久性仍然很低。我们设计了环状 ADAR 招募向导 RNA (cadRNA),以实现更高效的可编程 A-to-I RNA 编辑,而无需同时递送任何外源性蛋白质。使用这些 cadRNA,我们观察到在多个位点和细胞系中,在 RNA 的非翻译区和编码区中,都有稳健而持久的 RNA 编辑,并且具有高转录组特异性。此外,我们通过在反义域中整合散布的环路来增加靶腺苷的转录水平特异性,从而减少旁观者编辑。通过腺相关病毒在体内递送 cadRNA,可使 C57BL/6J 小鼠肝脏中的 mPCSK9 转录本实现 53% 的 RNA 编辑,并使 IDUA-W392X 小鼠 I 型黏多糖贮积症模型中的琥珀色无义突变实现 12% 的 UAG-UGG RNA 校正
虽然目前的急性白血病治疗方案可以显着改善患者的生存,但仍有改善的余地。由于其在细胞分化,细胞存活和凋亡信号传导中的作用,环状AMP(CAMP)途径的调节为血液恶性肿瘤提供了有意义的靶标。几项研究表明,与急性白血病患者相关的各种凋亡因子的培养基cAMP活性或与cAMP途径相关的各种凋亡因子的下调相关的基因表达谱图显而易见。以前增加了白血病细胞内营地的工作,重点是使用cAMP类似物,通过跨膜相关的腺苷酸循环酶刺激cAMP产生,或通过抑制磷酸二酯酶活性来减少营地降解。但是,通过ATP结合盒(ABC)转运蛋白靶向环状核苷酸外排是一种未开发的方法,用于调节细胞内环状核苷酸水平。初步研究表明,抑制营地的抑制可以刺激白血病细胞分化,细胞生长停滞和凋亡,这表明靶向营地的靶向营地可能对未来的治疗发育显示出希望。此外,抑制环状核苷酸转运蛋白活性也可能通过减少恶性细胞中细胞外促生存信号传导来造成多种抗癌益处。因此,可能存在一些用于靶向环状核苷酸转运蛋白的药物重新利用的机会。
摘要:在抗生素后时代,抗生素抗性的快速发展和可用的抗生素短缺正在引发新的医疗危机。发现新颖和有效的抗生素以扩展抗生素管道是紧迫的。小分子抗菌肽由于其丰富的结构多样性而具有多种抗菌光谱和多种创新抗菌机制。因此,它们已成为一个新的研究热点,被认为是下一代抗生素的有前途的候选人。因此,我们收集了一系列来自过去十五年的海洋微生物的小分子抗菌肽,以显示该领域的最新进展。我们将这些化合物分为三类:环状寡肽,环状二肽和环状脂肪肽 - 根据其结构特征,并呈现其来源,结构和抗菌谱,并讨论某些化合物的结构活动关系和机制。
BTV 和 EHDV 从近大陆经空气传播到英国的风险。时间段:2024 年 11 月 6 日至 12 日。本报告描述了过去一周内蓝舌病病毒 (BTV) 或流行性出血病病毒 (EHDV) 感染的蚋从近大陆进入英国 (GB) 的回顾性风险。它并不试图预测病毒进入的未来风险,也不考虑早于上述时间段的历史风险。我们估计,过去一周内,从近大陆经空气传播感染 BTV 的蚋进入英国的总体风险为“非常低”(定义见附录 A),这意味着过去一周蚋被吹入英国的可能性很小,但并非不可能。我们认为,过去一周,从法国来源传入感染 BTV 的蚋的风险不容忽视(这意味着不能忽略这种风险)。尽管我们认为过去一周的气象条件不适合来自荷兰源头的媒介入侵,但我们仍在继续监测该国最近发现的 BTV-3 和 BTV-12。西南地区(附录 C)的县被确定为可能受到来自法国源头的入侵(极低风险)。我们对来自法国源头的风险的估计反映了目前法国大陆存在的任何 BTV 菌株入侵的可能性(最近有关于 BTV-3 和 BTV-8 的报道)。由于对法国高风险地区蚋和易感牲畜的当前感染状况了解有限,BTV-8 来自法国源头入侵的风险仍不确定,这意味着该估计存在中等不确定性。我们估计过去一周从近大陆通过空气传播感染 EHDV 的蚋到英国的总体风险“可忽略不计”,这意味着风险足够低,不值得考虑。但是,由于法国最近报告了 EHDV 感染情况,因此来自法国的风险评估存在中等不确定性。我们还考虑了过去两周英格兰南部和东部沿海和近沿海地区(英国最容易受到空气传播病毒入侵的地区)的媒介活动和温度,以估计一旦发生入侵,BTV 在这些地区继续传播的潜在风险。该风险仅考虑了过去两周进入该国的传染性媒介的传播风险,并没有考虑在此之前感染的媒介的传播风险。我们估计,如果确实发生入侵,过去两周 BTV 传播的风险在所有四个地区(东北部、东英吉利、东南部和西南部)都是“可忽略不计的”。这意味着,由于过去两周内有传染性媒介进入该国,所有四个地区的气温被认为始终不适合当地蠓种群持续传播 BTV。欧洲 BTV 和 EHDV 疫情的初步评估已经出炉,其中还考虑了病毒的其他潜在进入途径。阅读有关欧洲蓝舌病病毒 (GOV.UK) 阅读有关欧洲流行性出血病 (GOV.UK) 的更多详细信息,请参阅以下报告中的七个表格。对于 BTV 和 EHDV,我们提供了三个表格来描述空气入侵的风险。这些表格代表:
技术正在迅速发展,在新的方法和材料方面不断突破其极限。在这种情况下,3D(亚)微打印平台尤其令人感兴趣,因为它们可以制备具有高分辨率和任意复杂度的3D微纳米结构。这方面最有前途的技术之一是直接激光写入(DLW),[1,2]这是一种基于双光子聚合反应的增材制造技术,可用于获得高通量[3]和低于100纳米的分辨率的(亚)微米物体和图案。 [4]为实现此目的,DLW利用聚焦的长波长激光飞秒脉冲照射能够在高能辐射下交联的感光树脂。 [5]虽然树脂的吸收率与激光不匹配,但在焦点处,辐射强度足够高,以至于可能发生多光子吸收现象并引发聚合过程(或触发正性光刻胶的分解)。由于抗蚀剂对激光是透明的,因此打印仅发生在焦点周围非常小的体积内(“体素”,即二维“像素”的三维模拟)。通过移动后者,只需一个简单的步骤即可获得复杂的三维架构。由于其灵活性以及易于集成功能材料的可能性,DLW 已在 MEMS、[6] 光子学、[7] 表面改性、[8] 安全系统、[9] 和生物医学研究等领域找到了多种应用。[10,11]
摘要 凝缩蛋白是通过线性易位压缩 DNA 的分子马达。在秀丽隐杆线虫中,X 染色体含有一种参与剂量补偿 (DC) 的专门凝缩蛋白。凝缩蛋白 DC 被招募到 X 染色体 (rex) 上的少数招募元素并从中扩散,并且是拓扑关联域 (TAD) 形成所必需的。我们利用基本上没有凝缩蛋白 DC 和 TAD 的常染色体来解决 rex 位点和凝缩蛋白 DC 如何引起 TAD 的形成。当常染色体和 X 染色体物理融合时,尽管凝缩蛋白 DC 扩散到常染色体中,但不会产生 TAD。在 X 染色体上插入强 rex 都会导致 TAD 边界形成,无论序列方向如何。当相同的 rex 插入到常染色体上时,尽管有凝缩蛋白 DC 募集,但没有扩散或 TAD 特征。另一方面,当由六个 rex 位点或三个单独的 rex 位点组成的“超级 rex”插入到常染色体上时,凝缩蛋白 DC 的募集和扩散导致 TAD 的形成。因此,募集到 rex 位点并从 rex 位点扩散是重现 X 染色体上观察到的环锚定 TAD 的必要和充分条件。总之,我们的数据表明一个模型,其中 rex 位点既是凝缩蛋白 DC 的加载位点,也是双向屏障,凝缩蛋白 DC 是一种具有可移动非活性锚的单侧环挤出器。
环状细菌素 plantacyclin B21AG 的晶体结构和定点诱变揭示了对抗菌活性很重要的阳离子和芳香族残基 Mian-Chee Gor 1,2,+ , Ben Vezina 1,+ , Róisín M. McMahon 1 , Gordon J. King 3 , Santosh Panjikar 4,5 , Bernd HA Rehm 1,6 , Jennifer L. Martin 1,7 , Andrew T. Smith 1,8, * 1 格里菲斯大学格里菲斯药物发现研究所,Don Young Road,Nathan,昆士兰州,4111 澳大利亚。2 皇家墨尔本理工大学科学学院,Plenty Road,Bundoora,维多利亚州,3083 澳大利亚。3 昆士兰大学理学院,昆士兰州,澳大利亚。4 澳大利亚同步加速器,ANSTO Clayton,维多利亚州,澳大利亚。 5 莫纳什大学分子生物学和生物化学系,墨尔本,维多利亚州,3800 澳大利亚 6 格里菲斯大学细胞工厂和生物聚合物中心,格里菲斯药物发现研究所,内森,昆士兰州,4111 澳大利亚。 7 伍伦贡大学,诺斯菲尔兹大道,伍伦贡,新南威尔士州,2522 澳大利亚。 8 格里菲斯科学学院,格里菲斯大学,黄金海岸,昆士兰州,4222 澳大利亚。