Abbreviations AFRC Albion Fisheries Research Centre AID Association d'Intervention pour le Développement et l'Environnement (Comoros) AMP Aldabra Marine Programme ARVAM Agency for Marine Research and Development BV Blue Ventures CEAGI Coastal East Africa Global Initiative CHICOP Chumbe island Coral Park CI Conservation International CORDIO Coastal Oceans Research and Development in the Indian Ocean (formerly Coral Reef Degradation in the Indian Ocean) COREMO Coral Reef Monitoring database (ARVAM) COUT Cellule des Océanographes de l'Université de Toliara CRIS Coral Reef Information System CRTF Coral Reef Task Force DOC Dissolved Organic Carbon DRC D'Arros Research Centre EAME East Africa Marine Ecoregion EIA Environmental Impact Assessments FFEM French Global Environment Facility GCRMN Global Coral Reef Monitoring Network GEF Global Environment Facility GVI Global Vision International ICM/ICZM Integrated Coastal (Zone) Management ICS Island Conservation Society ICT Information Communication Technology IHSM Institut Halieutique et海洋科学 (图莱亚尔) IMS 海洋科学研究所 IOC 印度洋委员会
在热带地区,地球上两个最多样化的自然社区,珊瑚礁和雨林都出现。珊瑚礁在逻辑上产生的物理复杂性,高物种多样性,详尽的组成物种的体质以及物种之间的共同发展关联。雨林和珊瑚礁通常被认为代表了巴尔(Barlh)上生物多样性的两个针孔,但没有详细的尝试量化珊瑚礁的总物种多样性。本章介绍了为什么珊瑚礁对于所有社会保护和管理未来都很重要,它解决了海洋器官ISMS系统中培训专家的需求(尤其是那些会研究富裕且知名度不佳的热带人士!区域),并提供了与雨林相比,全球珊瑚礁总生物多样性的第一个量化估计。
珊瑚礁底栖生物主要由珊瑚和藻类栖息,它们经常直接竞争空间。大量研究表明,珊瑚伴生细菌与周围海水不同,并且至少部分是物种特异性的(即同一种珊瑚上有同一种细菌)。在这里,我们将这些微生物研究扩展到珊瑚礁中发现的四种主要藻类生态功能群:直立和包覆钙化藻、肉质藻和草皮藻,并将结果与在造礁珊瑚 Montastraea annularis 上发现的群落进行比较。使用 16S rDNA 标签焦磷酸测序发现,不同的藻类属含有特征性的细菌群落,这些群落通常比珊瑚上的细菌群落更加多样化。虽然大多数与珊瑚有关的细菌与已知的异养生物有关,主要消耗富含碳的珊瑚粘液,但与藻类有关的群落含有大量自养生物。大多数与藻类有关的自养细菌是蓝藻,可能对藻类的氮循环很重要。与藻类相关的光合真核生物也种类丰富,包括
唐纳德·L·埃文斯 美国商务部部长 康拉德·C·劳滕巴赫尔,Jr. 美国海军中将(退役)。商务部海洋和大气事务副部长 美国国家海洋和大气管理局 James R. Mahoney 商务部海洋和大气事务助理部长 美国国家海洋和大气管理局 Margaret A. Davidson 海洋服务和沿海区管理助理局长(代理) 美国国家海洋局 美国国家海洋和大气管理局 本文件由美国商务部国家海洋和大气管理局 (NOAA) 与美国珊瑚礁工作组合作编制,旨在满足 2000 年《珊瑚礁保护法》(P.L.106-562;16 U.S.C.6401 et seq.)的要求。2002 年 6 月
在大约100个硬骨鱼珊瑚礁鱼家族中,有36个是众所周知,它们的鸡蛋在礁石上的矿物巢中产生,在那里它们被成年人育成(Shulman&Bermingham,1995年)。虽然在物种之间的孵化和幼虫的孵化能力差异很大,但在所有礁鱼中,嗅觉,听力和视力的感觉系统是最早在受肥后开始在胚胎中发育的器官之一(请参阅Myrberg&Fuiman 2002中的评论)。这可能是因为这些感觉必须在孵化时避开捕食者和饥饿的机会,必须达到一定程度的功能。但是,这些系统的早期开发也可能服务于其他功能。在某些动物中,在孵化过程中感觉到环境刺激的能力可能会构成在较旧的生活历史阶段有用的重要行为线索。例如,化学物质的印记
摘要:底栖海洋生物利用一系列防御和攻击机制来影响在坚硬的海洋基质上对空间的竞争。石珊瑚的清扫触手是竞争中使用的可诱导攻击性器官,但它们也可能起到先发制人的防御功能。红海北部埃拉特的脑珊瑚 Platygyra daedalea 中约有一半群落拥有清扫触手,其中许多并不朝向邻近的珊瑚。这些随机方向的清扫触手可能是为了探测距离群落 >5 厘米处珊瑚的定居或前进。在距离 P. daedalea <5 厘米的珊瑚群落中,约 43% 的珊瑚群落朝向相互作用区域出现组织损伤。受损最严重的邻近珊瑚属于 Favites 和 Leptastrea 属,而 Millepora 和同属 Platygyra 群落的受损程度明显较小。随着与 P. daedalea 距离的增加,邻近珊瑚群落的组织损伤显著减少。脑珊瑚上清扫触手的存在与群落直径显著相关,但与邻近群落的数量无关。埃拉特的 P. daedalea 攻击性触手长度为 5.3 ± 3.0 厘米,比之前报道的该属成员的长度要长。在实验室条件下,在与常见的块状珊瑚 F. complanata 群落初次接触后约 30 天,P. daedalea 群落上会长出清扫触手,在约 50 天时它们的长度达到最大,约为 6.5 厘米,比进食触手长 10 倍。在 2 个月内,清扫触手对 F. complanata 群落造成的组织损伤不断增加。在形态发生过程中,触手的尖端与柄部的比例和外胚层厚度会加倍,表明顶球发育,但触手柄的最大宽度不会改变。扫触手似乎是石珊瑚中常见的一种对抗机制,也可能是一种防御机制,使一些物种能够在拥挤的珊瑚礁栖息地中存活下来。
致谢 特别感谢那些通过讨论和回答问卷从管理角度提供方法描述和评估的人。我们特别感谢那些为 GCRMN 和本出版物提供资金支持的人:美国国务院、国家海洋和大气管理局、英国环境、食品和农村事务部、国际珊瑚礁倡议、世界自然保护联盟、CRC 珊瑚礁研究中心、道达尔基金会和国际珊瑚礁行动网络。科学和技术建议来自 AIMS、AGRRA(大西洋湾快速珊瑚礁评估)、CARICOMP、NOAA、ReefBase、Reef Check、CORAL 珊瑚礁联盟、大自然保护协会和 GCRMN 管理小组(联合国环境规划署、联合国教科文组织国际奥委会、世界自然保护联盟、世界银行、生物多样性公约秘书处)。来自 IMPAC(国际海洋项目活动中心)、CRC 珊瑚礁研究中心和 Alison Green 的人员提供了建议和支持。感谢 Tim Prior、Michael Phelan 和 Madeleine Nowak 的建议和校对。最后,特别感谢 AIMS 的生产人员 Wendy Ellery 和 Tim Simmonds;在紧张的时间安排下,他们又一次完成了非常专业的工作。
致谢 特别感谢那些通过讨论和回答问卷从管理角度提供方法描述和评估的人。我们特别感谢那些为 GCRMN 和本出版物提供资金支持的人:美国国务院、国家海洋和大气管理局、英国环境、食品和农村事务部、国际珊瑚礁倡议、世界自然保护联盟、CRC 珊瑚礁研究中心、道达尔基金会和国际珊瑚礁行动网络。科学和技术建议来自 AIMS、AGRRA(大西洋湾快速珊瑚礁评估)、CARICOMP、NOAA、ReefBase、Reef Check、CORAL 珊瑚礁联盟、大自然保护协会和 GCRMN 管理小组(联合国环境规划署、联合国教科文组织国际奥委会、世界自然保护联盟、世界银行、生物多样性公约秘书处)。来自 IMPAC(国际海洋项目活动中心)、CRC 珊瑚礁研究中心和 Alison Green 的人员提供了建议和支持。感谢 Tim Prior、Michael Phelan 和 Madeleine Nowak 的建议和校对。最后,特别感谢 AIMS 的生产人员 Wendy Ellery 和 Tim Simmonds;在紧张的时间安排下,他们又一次完成了非常专业的工作。
作者 WH Adey · 被引用 116 次 — 随着时间的推移,生产力下降,因为破坏力(例如,生物侵蚀海胆或严重的风暴)将死珊瑚侵蚀成路面状......