1 弗朗斯维尔跨学科医学研究中心 (CIRMF),弗朗斯维尔 BP 769,加蓬 2 法国国家科学研究院,生物统计和进化生物学实验室 UMR5558,里昂第一大学,69622 维勒班,法国 3 LabEx ECOFECT,传染病生态进化动力学,里昂第一大学,69622 维勒班,法国 4 MIVEGEC 实验室,UMR-CNRS 5290-IRD 224,IRD 蒙彼利埃,34394 蒙彼利埃,法国 5 国家葡萄球菌参考中心,传染病研究所,Croix Rousse 医院,里昂民事临终关怀院,69004 里昂,法国 6 细菌学实验室,罗纳-阿尔卑斯分枝杆菌观测站,传染性病原体,临终关怀院,69004 里昂,法国 7 国际传染病学研究中心,INSERM U1111,CNRS UMR5308,里昂第一大学,里昂高等院校,里昂临终关怀院,69004 里昂,法国 * 通讯地址:genistha@hotmail.com (BN); dominique.pontier@univ-lyon1.fr (DP) † 这些作者对这项工作做出了同等贡献。
。CC-BY-NC 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2025 年 2 月 2 日发布了此版本。;https://doi.org/10.1101/2025.01.29.635275 doi:bioRxiv 预印本
AcrIIA3 可恢复 CRISPR3 免疫菌株对噬菌体 2972 的敏感性。 (A)将 10 倍稀释的噬菌体 2972(从左到右为 10 0 至 10 ‐ − 7)点在噬菌体敏感菌株 S. thermophilus DGCC7710 及其 CRISPR 免疫衍生物上,这些菌株携带空载体 pTRKL2 (EV) 或表达 AcrIIA3 (AcrIIA3 CHPC640 ) 或 AcrIIA5 (AcrIIA5 D1126 ) 的载体。我们在干覆盖层上点了 5 μl 每种噬菌体稀释液。显示了至少三个生物学重复的代表性图像。 (B)与仅携带空载体的菌株相比,携带 Acr(未免疫、免疫或 CRISPR 免疫)的菌株噬菌体 2972 滴度的恢复倍数。误差线显示平均值±SD(n=3个生物学重复)。
A Lynn, B Robertshawe 2011 年 7 月、2012 年 3 月、2012 年 12 月(重新订购资料) A Lynn, B Robertshawe 2014 年 7 月(现在所有婴儿都开始使用 Prevenar) A Lynn, B Robertshawe 2015 年 3 月(冷链流程) A Lynn, B Robertshawe 2017 年 7 月 – 仅限高风险人群 A Lynn 2018 年 10 月 – 明确 3 个月和 5 个月婴儿的接种日期 A Lynn, B Robertshawe 2022 年 12 月 – 现在所有婴儿都开始使用 Prevenar A Lynn, B Robertshawe 2025 年 1 月 – 使用类固醇后的建议
更多信息 如果您或您的孩子有任何健康问题或过敏,请告知您的免疫接种提供者。您的免疫接种提供者将为您提供您或您孩子的免疫接种记录。将此记录保存在安全的地方,并在下次免疫接种时随身携带。如果您或您的孩子对疫苗有任何不寻常的反应,或者您有任何问题或疑虑,请联系您的初级保健提供者或公共卫生办公室。有用的网站:
我可以在哪里接种疫苗?儿童可以通过当地公共卫生办公室或初级保健提供者接种疫苗。更多信息如果您的孩子有任何健康问题或过敏,请告知您的免疫接种提供者。您的免疫接种提供者将为您提供您孩子的免疫接种记录。请将此记录保存在安全的地方,并在下次免疫接种时随身携带。如果您的孩子对疫苗有任何异常反应,或者您有任何问题或担忧,
本研究旨在探索纯水蛭唾液及其与优色林的组合对感染金黄色葡萄球菌的伤口的影响。实验包括在动物胸部背部区域诱导伤口。为了感染伤口,将 100 µl 密度为 0.5 McFarland 的金黄色葡萄球菌细菌引入伤口部位。使用 75 只雄性 Wistar 大鼠,分成 5 组,每组 15 只,每组进一步细分为 3 个亚组:用呋喃西林(阳性对照)、水蛭唾液、水蛭唾液软膏、优色林软膏和阴性对照(未治疗)治疗。随后,在第 7、14 和 21 天从伤口部位采集样本,以量化细菌存在并评估伤口组织恢复情况。宏观观察显示,在 14 天内,水蛭唾液软膏和纯水蛭唾液均具有良好的伤口愈合能力。微生物分析证实了水蛭唾液及其软膏配方的抗菌功效。根据研究结果,可以合理地推断,水蛭唾液软膏和纯水蛭唾液在促进伤口愈合和促进皮肤上皮组织再生方面均表现出令人称赞的功效。
摘要:抗生素在感染部位的生物利用度低是治疗失败和细菌耐药性增加的主要原因之一。因此,开发新的、非传统的抗生素输送策略来应对细菌病原体至关重要。在这里,我们研究了两种氟喹诺酮类药物环丙沙星和左氧氟沙星封装到聚合物基纳米载体(纳米抗生素)中,目的是提高它们在细菌感染部位的局部生物利用度。优化配方以实现最大药物负载。纳米抗生素的表面用抗葡萄球菌抗体作为配体分子进行修饰,以靶向金黄色葡萄球菌病原体。通过荧光共聚焦显微镜研究了纳米抗生素与细菌细胞的相互作用。常规测试(MIC 和 MBC)用于检查纳米抗生素制剂的抗菌性能。同时,还采用了生物发光分析模型,揭示了对胶体系统抗菌效力的快速有效评估。与游离型抗生素相比,靶向纳米抗生素对金黄色葡萄球菌的浮游生物和生物膜形式均表现出增强的抗菌活性。此外,我们的数据表明,靶向纳米抗生素治疗的疗效可能受其抗生素释放曲线的影响。
植物病毒对全球农业构成了重大威胁,并需要有效的工具才能及时检测。我们提出了AutoPvprimer,这是一种创新的管道,该管道整合人工智能(AI)和机器学习以加速植物病毒引物的发展。管道使用Biopython从NCBI数据库自动检索不同的基因组序列,以增加后续引物设计的鲁棒性。design_-primers_with_tuning模块使用随机森林分类器,可优化参数并为不同的实验条件提供灵活性。质量控制措施,包括评估Poly-X含量和熔化温度,提高了引物的可靠性。AUTOPVPRIMER独有的是Visualize_primer_dimer模块,它支持引物二聚体的可视化评估,这是其他工具中缺少的功能。引物特异性通过引物爆炸验证,这有助于管道的整体效率。AutoPvprimer已成功地应用于番茄镶嵌病毒,证明其适应性和效率。模块化设计允许用户自定义,并将适用性扩展到不同的植物病毒和实验场景。管道代表了引物设计的重大进展,并为研究人员提供了加速分子生物学实验的有效工具。未来的发展旨在扩展兼容性并纳入用户反馈,以巩固AutoPvprimer,作为对生物信息学工具箱的创新贡献,也是提高植物病毒学研究的有希望的资源。