Black Soldier fly ( Hermetia illucens ) larval (BSFL) frass was examined for its nutrient nitro- gen, phosphate and potassium (N:P 2 0 5 :K 2 O), phytohormone and biogenic amine content, its plant growth promoting activity, and screened to test the hypothesis that bacteria charac- teristic of the genus Enterococcus (present in the biome of decaying餐饮废物和幼虫的肠被BSFL排出。FRASS植物促进活性的促进活性是通过比较经过弗拉斯处理的土壤中的冬小麦浆果(Triticum aestivum)与未经处理(对照)土壤的生长的。n:p 2 0 5:k 2 o干物质平均水平,FRASS的生物胺和植物激素含量分别通过标准土壤分析,HPLC和HPLC/GC-MS方法确定。所有的浓度都太低,无法解释其植物生长促进活性。添加到土壤中的FRASS诱导了对照植物的空中质量增加11%,并且芽的长度增加了。在BEA(胆汁蛋白 - 阿戈尔)板上生长的肠球菌的许多菌落在直接从幼虫中检测到的frass板,这证实了可行的肠球菌从幼虫肠道中传递到其菌丝中的假设。由于以前已经将许多根瘤菌(包括肠球菌)确定为幼虫肠生物群的一部分在赋予其植物生长促进活性方面发挥作用。
免疫与生殖是雌性昆虫生存和种群维持的重要功能。然而由于资源有限,这两个功能无法同时满足,从而导致它们之间需要进行能量权衡。值得注意的是,这种免疫-生殖权衡的机制尚不清楚,而能量竞争可能在其中起着核心作用。本研究以飞蝗为研究对象,对参与脂质合成和昆虫能量代谢的关键基因脂肪酸合酶(FAS)进行了研究。利用细菌感染和RNA干扰(RNAi)技术研究了不同处理下蝗虫的免疫、繁殖力和能量代谢模式的变化。本研究结果表明,藤黄微球菌感染可触发蝗虫的免疫反应,显著上调防御素3(DEF3)和Attacin的表达,并增强酚氧化酶(PO)活性。当 FAS2 沉默后,细菌攻击在较小程度上上调了 DEF3 和 Attacin 的表达,导致溶菌酶活性增加而不是 PO。此外,细菌感染导致脂肪体中糖原和葡萄糖含量降低,同时三酰甘油(TAG)含量显著增加。然而,在 FAS2 敲低后,脂肪体中的脂质和碳水化合物含量均显著降低。与单独的细菌感染相比,低 FAS2 表达进一步加剧了蝗虫的繁殖力受损。卵黄蛋白 A ( VgA ) 和卵黄蛋白 B ( VgB ) 的表达水平显著降低,卵巢萎缩严重。值得注意的是,卵巢重量仅为对照组的 21%。此外,雌性表现出最少的产卵行为。总之,我们的研究结果表明,在 FAS2 基因沉默后,蝗虫更倾向于免疫刺激能量激活,而生殖投入减少。该研究成果将有助于进一步探索蝗虫免疫和生殖能量之间权衡的分子机制。
(Volova 等人,2010 年)。与化学表面活性剂不同,生物表面活性剂是一种次级代谢物,为微生物提供有利的环境,使其发挥其重要活性,例如塑料的生物修复(PHA、PE、PET 等)(Bhadra 等人,2022 年)。根据文献,枯草芽孢杆菌和铜绿假单胞菌利用其生物表面活性剂生产能力降解低密度聚乙烯 (LDPE)(Nnaji 等人,2021 年)。在塑料圈微生物群中,除链霉菌外,假单胞菌、葡萄球菌、红球菌、诺卡氏菌、梭菌和肠球菌都预测会产生生物表面活性剂,同时降解合成塑料。然而,大约 50% 的生物表面活性剂产生细菌与塑料降解细菌有关
兽医诊所中医院感染预防的重要元素是监测环境对象,空气,设备和仪器。为了确定将生病动物作为兽医诊所中医院感染病原体传播的盒子的作用,我们研究了储藏室和生物溶质表面的微生物群。为此,我们从塑料和钢盒,早晨卫生前的空气样品表面收集了冲洗,在用水和洗涤剂清洁和擦拭表面后以及消毒后。从盒子的表面上持有动物,我们主要是分离的葡萄球菌属,链球菌属的细菌,微球菌属,spp。,corynebacterium spp。和芽孢杆菌属。革兰氏阴性物种,我们发现的是spp。的细菌。和肠道属。湿清洁和消毒塑料盒后,我们检测到葡萄球菌属的种类。和肠球菌属。在5.4%的样品中,微球菌属。为8.1%和杆菌属。为2.7%。 肠杆菌属的革兰氏阴性细菌。 在2.7%的样品中发现。 同时,在不锈钢盒表面上消毒后发现细菌的样品中的微生物数量比从塑料盒的表面低2.0倍。 消毒后,空气菌群的基础包括微核属,corynebacterium spp。 和葡萄球菌属,可以进行空中传播。为2.7%。肠杆菌属的革兰氏阴性细菌。在2.7%的样品中发现。同时,在不锈钢盒表面上消毒后发现细菌的样品中的微生物数量比从塑料盒的表面低2.0倍。消毒后,空气菌群的基础包括微核属,corynebacterium spp。和葡萄球菌属,可以进行空中传播。我们确定了盒子表面的湿消毒后,空气中的微生物数量减少,平均相当于3.7倍,与消毒前相比。消毒后从盒子中分离出的细菌(微球菌属,葡萄球菌属)形成高度致密的生物膜,这可能确保微生物细胞的存活,从而使盒子成为医生感染的可能来源。
Gorris等人(2021)在美国响应气候变化时,美国球菌病(Valley Fever)预测的经济估值。天气攀登。2021; 13(1):107-123。 doi:10.1175/wcas-d-20-0036.1。PMID:34316325; PMCID:PMC8311625。
摘要:最近,在鹅香肠的成熟过程中,注意到了由氨和醋味组成的缺陷。位于意大利北部伦巴第塔的工艺设施的生产商要求我们确定该缺陷的原因。因此,本研究旨在确定潜在的负责药物来破坏这种鹅香肠。使用“针头探测”技术通过感觉分析检测到腐败。但是,由于高氨和醋的气味,变质的香肠无法销售。添加的起动培养物并未限制或抑制由Brevis(主要种类)以及粪肠球菌和粪肠球菌和粪肠球菌代表的腐败微生物。这些微生物在成熟过程中生长,并产生了大量的生物胺,这可能代表了消费者的风险。此外,Lev。Brevis,是一种杂种乳酸菌(LAB),还产生乙醇,乙酸和香肠颜色的变化。在体外确认生物胺的产生。此外,如先前的研究中所观察到的那样,腐败的第二个原因可以归因于成熟过程中生长的霉菌。分离的菌株,纳尔吉藤菌(Penicillium nalgiovense)作为开胃菜培养物和植木菌(P. lanosocoerulum),是一种环境污染物,在肉类和壳体之间生长出来,产生了大量的总挥发性氮,负责在成熟区和索苏群中感知到的ammonia味。这是对斑鸡香肠中Brevis占主导地位的第一个描述。
侵袭性肺炎球菌病 (IPD)。o Pneu-P-23 疫苗将不再在安大略省的公共资助疫苗计划中提供。与 Pneu-C-13 相比,这两种新的肺炎球菌结合疫苗将提供更广泛的侵袭性肺炎球菌病 (IPD) 保护,并且比 Pneu-P-23 提供更长时间的保护,而 Pneu-P-23 是安大略省计划中目前使用的两种疫苗。肺炎球菌计划的当前过渡将重点关注那些尚未完成或尚未接种所有符合条件的公共资助肺炎球菌疫苗(即 Pneu-P-23 和/或 Pneu-C-13)的人。因此,任何已经接种过目前符合接种条件的肺炎球菌疫苗的人(即任何已接种过 Pneu-P-23 和/或 Pneu-C- 13 的 65 岁以上或高风险人群)都被视为已接种疫苗,无需再接种 Pneu-C-20 疫苗。目前,尚无关于 Pneu-C-20 疫苗加强剂量的建议。
乳酸菌(LAB)可以通过竞争营养物质或产生一种或多种具有抗菌活性的代谢物(如细菌素)来抑制许多细菌,特别是水产品中的特定腐败菌(SSO),在水产品生物保鲜中起着至关重要的作用。乳酸菌属和乳球菌属是水产品保鲜中最常用的乳酸菌。基因编辑工具的改进对于开发具有优良水产品生物保鲜性能的新型乳酸菌菌株尤为重要。本文综述了目前最广泛使用的基于CRISPR/Cas的基因组编辑工具在乳酸菌属和乳球菌属中的研究进展,介绍了基于同源重组和碱基编辑器的基因组编辑工具。然后,简要回顾了CRISPRi在转录调控方面的研究现状。本综述可为基于CRISPR/Cas的基因组编辑工具在其他乳酸菌物种中的应用提供参考。