摘要。辐射传递方程是在大气温度温度上的温室气体效应的建模的核心和模拟的核心。为了处理云的逼真散射,我们需要处理极化并与向量辐射式跨方程式一起工作。在本文中,我们提出了一种基于积分数量和一种迭代方法的公式,该方法的收敛性和单音性被证明是雷利(Rayleigh)散射和极化的散射,即具有2个偏差方程的非线性系统,该方程与2个变量,an- gle and gle and glete and-Gle and flasile coulial coupl and频繁及其频繁的等方程式,并具有频繁的方程式。 ture。的存在和解决方案的唯一性被证明,并使用从卫星测量中获取的参数给出了现实的数值模拟。
摘要:本研究提出,激光脉冲可以产生有限振幅瑞利波,用于增材制造过程中的工艺监控。非接触式工艺监控使用脉冲激光产生瑞利波,并使用自适应激光干涉仪接收它们。文献中的实验和模型表明,有限振幅波形会随着传播距离而演变,甚至会在平面粒子速度波形中形成冲击波。非线性波形演变表明材料非线性,它对材料微观结构敏感,进而影响强度和断裂性能。测量是在定向能量沉积增材制造室内对平面 Ti-6Al-4V 和 IN-718 沉积物进行的。通过检测平面外粒子位移波形,还可以获得平面位移和速度波形。波形演变可以表征为 (i) 通过在不同点接收一个源振幅,或 (ii) 通过应用不同的源振幅在一个点接收。提供了针对有意调整的关键工艺参数的样本结果:激光功率、扫描速度和舱口间距。
我们应用 Boussinesq 方程的弱形式来表征非常精确的数值模拟中势能、动能和粘性能通量的平均值和标准差的缩放特性。研究了局部 Bolgiano-Oboukhov (BO) 长度,发现其值可能在整个域内发生数量级的变化,这与之前的结果一致。然后,我们研究了弱方程的逐尺度平均项,它们是 Kármán-Howarth-Monin 和 Yaglom 方程的推广。我们没有发现经典的 BO 图像,但发现了 BO 和 Kolmogorov 缩放混合的证据。特别是,所有能量通量都与温度的 BO 局部 Hölder 指数和速度的 Kolmogorov 41 兼容。这种行为可能与各向异性和对流的强烈异质性有关,这反映在 BO 局部尺度的广泛分布中。逐尺度分析还使我们能够将从其定义计算出的理论 BO 长度与通过弱分析获得的缩放经验提取的理论 BO 长度进行比较。可以观察到缩放,但范围有限。这项工作的关键结果是表明问题的局部弱公式分析对于表征波动特性非常有用。
43.7 哮喘的事先授权标准——中度至重度(奥马珠单抗)和重度(贝那利珠单抗、美泊利珠单抗和瑞利珠单抗)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .59 43.7.1 美泊利单抗. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 60 43.7.2 奥马珠单抗。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 60 43.7.3 贝那利珠单抗。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 60 43.7.4 瑞利珠单抗。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 60
(b)使用 Mie ACCD 探测器(蓝色条)测量的示例性信号分布和通过 FI 传输的信号的 Lorentzian 拟合,用于确定 Mie 条纹质心位置 m。 (c)用瑞利 ACCD 探测器测得的示例性信号分布(绿色条)和通过两个 FPI 传输的信号的高斯拟合(A:粉色,B:橙色)用于确定瑞利点位置 r A 和 r B 。 div>
“我们很高兴获得这项重要任务,尤其是因为这项技术在电动汽车的能源管理中起着关键作用。” Marelli 电力传动系统部门总裁 Hannes Prenn 表示。“这进一步加强了我们与全球汽车制造商的合作,也是对 Marelli 多年来在开发不同架构的 BMS 方面积累的丰富经验的认可,这些 BMS 可以满足我们客户的特定需求,并与他们共同打造未来的汽车。” 获奖的电池管理系统将由 Marelli 位于意大利和日本的电力传动系统团队开发和测试。该系统计划于 2026 年开始生产,为汽车制造商的各个工厂供货。BMS 将基于分布式架构,需要的线束更少。该系统(简而言之,其作用是监控和控制电池)将所有与锂电池单元相关的硬件集成到电池模块控制器 (CMC) 上,该控制器直接放置在被监控的电池模块上。该解决方案减少了大量的布线,布线仅限于相邻 CMC 模块之间的几条传感器线和通信线。因此,每个 CMC 都更加独立,并根据需要处理测量和通信。电池管理系统的主要任务是管理电池的存储电量和容量,以便为车辆提供能量,同时检查和提供有关电池的信息
1900 年 12 月 14 日,马克斯·普朗克向德国物理学会提交了他对黑体辐射分布定律的推导,能量量子的概念首次出现在物理学中。考虑到量子理论产生的巨大影响,令人惊讶的是,很少有人关注普朗克迈出引入量子的第一步的推理的详细研究。当然,文献中有许多关于量子理论起源的描述,但几乎所有这些描述在历史上都是不准确的、缺乏批判性的,而且对于普朗克自己的工作及其背景都具有很大的误导性。我们确实有普朗克的回顾性记述[1],这些记述清晰而一致地描绘了他自己对这一发展的看法,还有罗森菲尔德[21]的一篇关于量子理论早期的优秀专著,该书对普朗克的工作进行了恰当的历史背景介绍,但鲜为人知。在我看来,如果我们要充分理解普朗克决定性一步的性质,以及它在多大程度上标志着与先前思想的真正决裂,仍然有两个关键问题必须回答,这两个问题并非毫无关联。第一个问题实际上是一个历史问题:普朗克是否知道瑞利推导出的辐射分布定律是经典物理学的必然结果?大多数作者对这个问题的回答是肯定的,并将普朗克引入量子描述为他对经典理论与实验结果不一致以及经典理论在“紫外灾变”中表现出的内部失败所带来的“危机”挑战的回应。事实上,根本没有这样的危机,或者说根本没有意识到这样的危机。1900 年夏天之前,所有关于黑体辐射的研究都是在不了解古典物理学对这个问题意味着什么的情况下进行的。直到 1900 年 6 月,瑞利勋爵才发表了一份两页的说明,其中首次推导出古典分布定律,瑞利论文的非常严重的意义在相当长一段时间内才被普遍认识到。普朗克在 1900 年和 1901 年的论文中没有提到瑞利的说明,在多年后发表的关于量子理论起源的论述中也没有提到瑞利。然而,普朗克似乎知道瑞利的工作,但他并不认为它比他对大约在同一时间发表的其他几篇论文更有意义,在这些论文中,或多或少地尝试了临时方法。
摘要。大气湍流通常会阻碍远距离光学成像应用。湍流对成像系统的影响可以表现为图像模糊效应,通常通过系统中存在的相位失真来量化。模糊效应可以根据沿传播路径测量的大气光学湍流强度及其对成像系统内相位扰动统计的影响来理解。获取这些测量值的一种方法是使用动态范围的瑞利信标系统,该系统利用沿传播路径的战略性变化的信标范围,有效地获得影响光学成像系统的像差的估计值。我们开发了一种从动态范围的瑞利信标系统中提取断层扫描湍流强度估计值的方法,该系统使用 Shack - Hartmann 传感器作为相位测量装置。介绍了从快速序列中获得的战略性范围变化的信标测量中提取断层扫描信息的基础,以及典型湍流场景的建模示例。此外,处理算法还用于模拟孤立强湍流层的识别。我们介绍了所选处理算法的基础,并讨论了该算法作为大气湍流分析方法的实用性。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.OE.59.8.081807]
摘要:目的:分析阿帕替尼和卡利珠单抗联合肝动脉化疗栓塞术(TACE)治疗原发性肝细胞癌(HCC)的疗效。患者与方法:选择我院2019年3月1日至2022年3月1日收治的150例原发性HCC患者,随机分为对照组和治疗组。对照组行TACE治疗,治疗组行阿帕替尼+卡利珠单抗+TACE治疗。比较两组的近期和远期疗效。比较两组的总生存时间(OS)、进展时间(TTP)和住院费用。两组患者均于治疗前及治疗后1个月采集空腹静脉血,采用全自动生化分析仪检测肝、肾功能;采用流式细胞术检测CD3+、CD4+、CD8+水平,计算CD4+/CD8+;采用酶联免疫吸附试验(ELISA)检测血清半胱氨酸天冬氨酸特异性蛋白酶8(Caspase-8)、血管内皮生长因子(VEGF)、甲胎蛋白(AFP)水平。密切观察患者病情,比较两组腹泻、手足综合征、骨髓抑制、蛋白尿、发热、疼痛等不良反应发生率。结果:治疗组短期治疗疾病控制率(DCR)为97.33%,高于对照组的88.00%。治疗组9月及12月生存率分别为65.33%、42.67%,亦显著高于对照组的48.00%、20.00%(P<0.05)。
区分两个光学点源是光学领域的一个重要课题,有望应用于天文观测和生物成像。然而,传统方法有一个称为瑞利诅咒 [1] 的缺陷,当两个点源彼此靠近时,很难区分它们。这个问题可以转化为估计两个点源的质心和分离的问题,瑞利诅咒表示当两个点源彼此靠近时难以估计分离。最近,Tsang 等人 [1] 在量子理论框架下研究了这个问题,并表明有可能以与它们相距较远时相同的精度估计两个靠近的点源之间的分离。此外,他们设计了一种称为空间模式解复用(SPADE)的测量方案,当预先知道两个点源的质心时,该方案可以达到这种精度。 SPADE 方案可以让我们准确估计分离,但它需要事先知道质心。因此,Grace 等人 [2] 提出了一个两步程序,其中首先要估计质心。与此同时,Parniak 等人 [3] 和 Bao 等人 [4] 研究了同时估计质心和分离,但他们没有考虑测量的最优性。