粒子系统的力学:约束;广义坐标;虚拟工作的虚拟位移和原则; D'Alembert的原则;广义力量;拉格朗日;拉格朗日的运动方程;循环坐标;速度依赖性潜力;科里奥利的力量;能量原理;瑞利的耗散功能。动作积分;汉密尔顿的原则; Lagrange的方程式通过变异方法;汉密尔顿的非全面系统原则;对称特性和保护法; Noether的定理。规范结合坐标和动量; Legendre转型;汉密尔顿;汉密尔顿的方程式来自各种原则; Poincare-Cartan的整体不变;固定行动的原则;费马特的原则;规范转型;生成功能;泊松支架;运动方程;动作角度变量;汉密尔顿 - 雅各比方程;汉密尔顿的主要功能;汉密尔顿的特征功能; liouville的定理。普朗克定律,照片电动效应;玻尔理论,康普顿效应; de Broglie波;波粒二元论;最小不确定性产品;需要新的机制;路径积分;量子力学的基本法律和基础; Schrödinger方程;量子状态,可观察和密度矩阵形式主义的入门概念。
回顾过去的 1000 年,我们发现红外 (IR) 辐射本身直到 200 年前才为人所知,当时赫歇尔首次报告了温度计实验 [1]。他建造了一个粗糙的单色仪,使用温度计作为探测器,以便测量阳光中的能量分布。继基尔霍夫、斯蒂芬、玻尔兹曼、维恩和瑞利的工作之后,马克斯·普朗克以著名的普朗克定律进一步推动了这一努力。传统上,红外技术与控制功能和夜视问题有关,早期应用仅与红外辐射检测有关,后来通过形成温度和发射率差异的红外图像(识别和监视系统、坦克瞄准系统、反坦克导弹、空对空导弹)。第二次世界大战期间见证了现代红外技术的起源。近五十年来,高性能红外探测器的成功开发使得红外技术在遥感问题上的应用取得了成功。大部分资金用于满足军事需求,但和平应用不断增加,特别是在二十世纪最后十年。这些包括医疗、工业、地球资源和节能应用。医疗应用包括热成像,其中对身体进行红外扫描可以检测出癌症或其他创伤,从而提高体表温度。地球资源测定
回顾过去的 1000 年,我们会发现红外 (IR) 辐射本身直到 200 年前才为人所知,当时赫歇尔首次报告了温度计实验 [1]。他建造了一个粗糙的单色仪,使用温度计作为探测器,以便测量阳光中的能量分布。继基尔霍夫、斯蒂芬、玻尔兹曼、维恩和瑞利的工作之后,马克斯·普朗克以著名的普朗克定律进一步推动了这一努力。传统上,红外技术与控制功能和夜视问题有关,早期应用仅与红外辐射检测有关,后来通过形成温度和发射率差异的红外图像(识别和监视系统、坦克瞄准系统、反坦克导弹、空对空导弹)。第二次世界大战期间见证了现代红外技术的起源。近五十年来,高性能红外探测器的成功开发使得红外技术在遥感问题上的应用取得了成功。大部分资金用于满足军事需求,但和平应用不断增加,特别是在二十世纪最后十年。这些应用包括医疗、工业、地球资源和节能应用。医疗应用包括热成像,其中对身体进行红外扫描可以检测出癌症或其他创伤,从而提高体表温度。地球资源测定是通过使用卫星的红外图像以及
摘要:在过去的几十年里,太赫兹技术取得了长足的进步,这从当前太赫兹源和探测器的性能以及多种太赫兹应用的出现可以看出。然而,在量子技术领域,太赫兹光谱域仍处于起步阶段,不像近年来蓬勃发展的邻近光谱域。值得注意的是,在微波领域,超导量子比特目前是量子计算机的核心,而量子加密协议已通过卫星链路在可见光和电信领域成功演示。太赫兹领域在这些令人瞩目的进步中落后了。今天,太赫兹领域的当前差距显然与量子技术有关。尽管如此,在太赫兹频率下工作的量子技术的出现可能会产生重大影响。事实上,由于太赫兹辐射对大气扰动的敏感性较低,因此对于具有终极安全性的无线通信具有重大前景。此外,它还有可能提高固态量子比特的工作温度,从而有效解决现有的可扩展性问题。此外,太赫兹辐射可以操纵分子的量子态,这被认为是进行长距离相互作用的量子计算和模拟的新平台。最后,它穿透通常不透明材料的能力或其对瑞利散射的抵抗力对于量子传感来说是非常有吸引力的特性。从这个角度来看,我们将讨论潜在的
摘要。详细分析了使用平面和曲面光子微机电系统镜进行高斯光束的自由空间耦合。分析了理论背景和非理想效应,例如有限的微镜范围、球面微镜曲率不对称、轴未对准和微镜表面不规则。使用推导的公式从理论和实验上研究和比较平面(一维)、圆柱形(二维)和球面(三维)微镜的行为。分析重点关注曲面微镜曲率半径与入射光束瑞利范围相当的尺寸范围,也对应于参考光斑尺寸。考虑到可能的非理想性,推导出基于传输矩阵的场和功率耦合系数,用于一般微光学系统,其中考虑了微系统切向和矢状平面中的不同矩阵参数。结果以归一化量的形式呈现,因此研究结果具有普遍性,可应用于不同情况。此外,还制造了形状可控的硅微镜,并用于实验分析可见光和近红外波长的耦合效率。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。分发或复制本作品的全部或部分内容需要完全注明原始出版物,包括其 DOI。[DOI:10.1117/1.JOM.2.3.034001]
— 基于和黄医学索凡替尼抑制血管生成和肿瘤相关巨噬细胞的协同潜力以及与恒瑞卡瑞珠单抗的抗 PD-1 活性的协同潜力,促进对肿瘤细胞的免疫反应 — 和黄医学(中国)有限公司(“和黄医学”)今天宣布启动一项 II/IIIII 期临床试验,以评估和黄医学候选药物索凡替尼、江苏恒瑞医药股份有限公司(“恒瑞医药”)的 PD-1 抗体卡瑞珠单抗、白蛋白结合型紫杉醇和吉西他滨联合用于治疗中国转移性胰腺导管腺癌(“PDAC”)患者的一线疗效。PDAC 是一种外分泌肿瘤,也是最常见的胰腺癌形式。首位患者于 2024 年 5 月 8 日接受了第一剂治疗。PDAC 是一种高度侵袭性的癌症,占胰腺癌病例的 90% 以上。全球估计有 511,000 人被诊断出患有胰腺癌,2022 年导致约 467,000 人死亡,平均五年生存率不到 10%。在中国,估计有 119,000 人被诊断出患有胰腺癌,2022 年导致约 106,000 人死亡。1 化疗、手术和放疗等治疗方法很常见,但并未显示出对患者预后的显著改善。不到 20% 的转移性胰腺癌患者存活超过一年。 2 该试验是一项多中心、随机、开放标签、阳性对照的 II/II 期试验,旨在评估索凡替尼联合卡瑞利珠单抗、白蛋白结合型紫杉醇和吉西他滨与白蛋白结合型紫杉醇联合吉西他滨治疗未接受过全身抗肿瘤治疗的转移性胰腺癌成人患者的疗效和安全性。在初步安全性磨合阶段之后,该研究的 II/II 期可能会招募另外 500 名患者,主要终点是总生存期 (OS)。其他终点包括客观缓解率 (ORR)、无进展生存期 (PFS)、疾病控制率 (DCR)、安全性、生活质量、缓解持续时间和缓解时间。更多详细信息可在 clinicaltrials.gov 上使用标识符 NCT06361888 找到。 HUTCHMED 首席执行官兼首席科学官苏伟国博士表示:“新兴数据(包括在 ASCO 胃肠道癌症研讨会上公布的一项研究者发起的研究数据)表明,与现有的转移性 PDAC 化疗相比,索凡替尼、卡瑞利珠单抗和化疗的组合具有良好的疗效。3 我们希望此次合作能够让我们为患者带来新的、可能改变生活的治疗选择。”
执行摘要 目前业界测量应变的惯例是使用电阻箔应变计。这些传感器安装起来很费时,每个传感器需要三根屏蔽线,当需要进行高密度应变测量时,这会给被测结构增加相当大的重量和复杂性。电子仪表也容易疲劳,安装在作战飞机上时需要经常校准。分布式光纤应变测量系统可以大大降低安装成本和复杂性,并解决与电子仪表相关的一些耐用性和性能问题。本报告详细介绍了传统电阻箔应变计和基于瑞利散射的商用光纤分布式应变测量系统的性能之间的实验比较。所给出的结果比较了两个系统之间的应变响应、空间分辨率和噪声水平,首先是在包含疲劳裂纹的试样上,其次是在由退役 F/A-18 中心筒组成的全尺寸疲劳试验件上,该试验件受到模拟作战谱载荷。在大多数区域,光学应变数据与使用箔应变计进行的测量结果相比效果良好,但是,该系统存在一些局限性,特别是在高应变梯度区域测量应变时。尽管存在这些局限性,但在许多情况下,与传统电阻箔应变计相比,瑞利散射仍有潜力以大幅降低每个传感点的成本提供详细的应变测量。
摘要 :在过去的几十年里,太赫兹技术取得了长足的进步,这从当前太赫兹源和探测器的性能以及多种太赫兹应用的出现可以看出。然而,在量子技术领域,太赫兹光谱域仍处于起步阶段,不像近年来蓬勃发展的邻近光谱域。值得注意的是,在微波领域,超导量子比特目前是量子计算机的核心,而量子加密协议已经通过卫星链路在可见光和电信领域成功演示。太赫兹领域在这些令人瞩目的进步中落后了。今天,太赫兹领域的当前差距显然与量子技术有关。尽管如此,在太赫兹频率下工作的量子技术的出现可能会产生重大影响。事实上,由于太赫兹辐射对大气扰动的敏感性低,因此它对具有终极安全性的无线通信具有重大前景。此外,它还有可能提高固态量子比特的工作温度,从而有效解决现有的可扩展性问题。此外,太赫兹辐射可以操纵分子的量子态,这被认为是进行长距离相互作用的量子计算和模拟的新平台。最后,它能够穿透通常不透明的材料,或者具有抗瑞利散射的能力,这些都是量子传感非常有吸引力的特性。从这个角度来看,我们将讨论潜在的
摘要 :在过去的几十年里,太赫兹技术取得了长足的进步,这从当前太赫兹源和探测器的性能以及多种太赫兹应用的出现可以看出。然而,在量子技术领域,太赫兹光谱域仍处于起步阶段,不像近年来蓬勃发展的邻近光谱域。值得注意的是,在微波领域,超导量子比特目前是量子计算机的核心,而量子加密协议已经通过卫星链路在可见光和电信领域成功演示。太赫兹领域在这些令人瞩目的进步中落后了。今天,太赫兹领域的当前差距显然与量子技术有关。尽管如此,在太赫兹频率下工作的量子技术的出现可能会产生重大影响。事实上,由于太赫兹辐射对大气扰动的敏感性低,因此它对具有终极安全性的无线通信具有重大前景。此外,它还有可能提高固态量子比特的工作温度,从而有效解决现有的可扩展性问题。此外,太赫兹辐射可以操纵分子的量子态,这被认为是进行长距离相互作用的量子计算和模拟的新平台。最后,它能够穿透通常不透明的材料,或者具有抗瑞利散射的能力,这些都是量子传感非常有吸引力的特性。从这个角度来看,我们将讨论潜在的
机器学习或模式识别中出现的许多问题都可以归结为求解关于 x 和 λ 的特征值问题 Ax = λx。降维(PCA、Fisher 判别)、谱聚类或数据表示(拉普拉斯、Hessian 特征图或扩散图)等任务都是基于计算矩阵的特征向量和特征值。有多种方法可以找到矩阵的谱分解。由于在高维中查找矩阵特征多项式的根在计算上不可行,因此只有在特殊情况下才有可能在有限的步骤内准确计算出特征值。通常,查找特征值和特征向量的算法是迭代的,例如幂法、逆法、瑞利商法、QR 方法,并且提供数值近似值而不是精确解。随着行业中矩阵规模的增加,使用快速、准确且可行的方法(即使对于大量数据也适用)尽可能高效地解决特征问题变得非常重要。最近,针对此问题提出了基于神经网络的方法。研究表明,他们的方法可以在相对较短的训练时间内成功解决线性代数系统。在本文中,我们将使用人工神经网络 (ANN) 解决特征问题,并在准确性、效率等方面将结果与标准求解器进行比较。我们通过求解热方程来证明所获得的特征向量的准确性。