学期 - I PH-101物理-I 1。Special Theory of Relativity: Frame of Reference, Galilean Transformation, Inertial and Non-inertial frames, Postulates of Special Theory of Relativity, Michelson-Morley Experiment, Lorentz transformation of space and time, Length contraction, Time dilation, Simultaneity in relativity theory, Addition of velocities, Relativistic dynamics, Variation of mass with velocity, Equivalence of mass and energy.2。热物理学:Maxwell-Boltzmann分子速度的分布定律,R.M.S.S.S的评估以及平均速度和最可能的速度,平均自由路径,运输现象。3。几何光学:组合薄镜头,同轴光学系统的主要点,厚镜头,基数的位置和特性,牛顿公式,图像的图形结构。眼部碎片,修复点。光学仪器光谱计(棱镜和光栅),六分。4。物理光学:观察干扰的干扰条件。条纹的连贯性和可见性。使用菲涅尔的二倍主义生产干涉条纹和波长的测定。米其逊干涉仪及其用途。由于薄膜引起的干扰。楔形胶片。牛顿的戒指。衍射-Frasnel的衍射,菲涅耳的半个周期区域,区域板,Fraunhofer的衍射,单缝,双缝。平面光栅理论。主最大值的宽度。瑞利的决议标准。解决棱镜和光栅的能力。通过反射极化。极化 - 非极化,极化和部分极化的灯光。单轴晶体,宝丽来,Huygen的双重折射理论的双重折射。半波和四分之一波板。生产和分析平面椭圆形和圆形偏振光。光学活动。菲涅尔的光旋转理论,特定旋转,比夸夸兹和劳伦斯半阴影。5。全息图:基本原理,全息及其应用。6。激光器:刺激和自发发射,爱因斯坦系数,刺激和自发排放的相对贡献,种群反演,激光发射,红宝石和He-ne激光器,激光光的特征。7。声学:超声波的生产和检测,液体中速度的测量,超声处理的应用。建筑物的典范。参考文献1。Mechanics-D.S.Mathur 2。optics-a.k.ghatak 3。热力和热力学-Brijlal&Subramanium 4。热物理b.k.agarwal 4。振荡和波的物理学 - r.b.singh 5。工程物理-A.S.S.Vasudeva
辨别活细胞、组织和材料的纳米级细节对许多现代研究工作至关重要。随着一组方法的出现,开辟了一条通往这一圣杯的道路,这些方法被统称为超分辨率显微镜 [ 1 , 2 ],能够突破衍射极限 [ 3 – 5 ]:传统上被认为是无法逾越的障碍。许多此类技术还可以揭示三维 (3D) 结构细节:相关示例包括受激发射损耗显微镜 [ 6 ]、PSF 工程 [ 8 – 12 ]、光激活定位显微镜 [ 7 ] 和多平面检测 [ 13 – 15 ],这只是其中的一部分。所有这些技术都依赖于非常精确的点源定位;它们的不同之处在于如何激发点物体以及如何收集相应发射的光子。对于 3D 成像,发射器经过荧光标记,确定其轴向位置是必不可少的一步。迄今为止,该问题已得到彻底研究,并已取得一些令人印象深刻的成果 [16]。但直到最近才开始考虑通过任何此类工程方法实现的基本深度精度 [17-19]。其背后的原理是系统地利用量子 Fisher 信息 (QFI) [20] 和相关量子 Cram´er-Rao 边界 (QCRB) 来获得与测量无关的极限 [21,22]。这与 Tsang 等人量化横向两点分辨率 [23-27] 的工作非常相似,后者已消除了瑞利诅咒 [28-31]。在最近的一项研究 [32] 中,已经确定了使用高斯光束的轴向定位的极限精度。只要将检测平面放置在一个最佳位置,只需一次强度扫描即可达到此极限。在本文中,我们概括了这些结果,并推导出拉盖尔-高斯 (LG) 光束轴向定位的量子极限,该光束携带量化的轨道角动量 [33]。在这里,光束腰充当点源在模式转换等之后发射的光的实现。另一个相关情况是在表面拓扑测量等中光束从表面的反射。通过线性叠加不同的 LG 模式,可以实现具有幅度、相位和强度模式的光束,这些光束在自由空间传播下简单旋转,保持横向形状。这些旋转结构是各种传感技术的核心 [34-37]。我们证明,强度扫描中只能获得全部(量子)信息的一小部分,其中只有一小部分可以归因于旋转。这清楚地证实了模式
马瑞利推出用于赛车运动的基于人工智能的新型电子控制单元,用于发动机和车辆控制,适用于从传统到电动的所有类型的车辆推进器。该解决方案名为 VEC_480,可确保与车载实时人工智能计算的兴起趋势 100% 兼容,并将于 11 月 13 日至 14 日在德国科隆举行的专业赛车世界博览会上亮相。这项突破性技术重新定义了赛车运动传统车辆控制单元 (VCU) 的标准,提供前所未有的性能、效率、可靠性、计算能力和先进的连接性,以满足该行业日益增长的需求。与之前的 VCU 相比,新解决方案在计算能力方面提供了卓越的性能。实时计算性能提高了 2.5 倍;处理器间带宽增加了 10 倍,RAM 内存带宽得到了改善,从而能够更可靠地重复关键的车辆操作。 VCU 是高性能控制单元,将不同的功能集成到单个设备中:发动机和底盘控制和驱动、数据记录和遥测和云端网关、车载网络。基于 Marelli Motorsport 在车辆控制解决方案方面的扎实专业知识,VEC_480 旨在实时(毫秒)管理日益复杂的神经算法。这是通过采用先进的 AI 加速器 (NPU) 实现的,其计算能力高达 26 TOPS(每秒万亿次运算)。这项尖端技术为内部车辆网络和发动机或车辆管理提供了更大的潜力。设备中嵌入的强大 AI 加速器支持低延迟和高效率的实时 AI 推理,为神经虚拟传感器、人工智能数据推理、实时视频处理(轨迹检测、物体检测等)、定位和定位、性能分析、预测分析、语音识别铺平了道路。该技术还兼容并支持顶级 AI 框架,例如 TensorFlow、TensorFlow Lite、Keras、PyTorch 和 ONNX。该解决方案是对 Marelli Motorsport 在专业赛车世界博览会(10.01 展厅 3064 展位)上展示的一系列先进技术的补充。作为技术开发的加速器,Marelli Motorsport 为赛车开发创新和尖端解决方案,通过利用敏捷、快速和优化的设计,使其流向乘用车业务。关于 Marelli Marelli 是汽车行业领先的移动技术供应商。凭借在创新和制造卓越方面强大而成熟的业绩记录,我们的使命是通过与客户合作来改变移动的未来
光纤基础架构对于处理从军事智能到个人信息的广泛敏感数据至关重要。近年来,这些系统对这些系统的破坏尝试增加,以及未经授权的数据拦截的风险,这对量子计算的进步加剧了[1,2]。光纤特别容易受到窃听攻击的影响,其中未经授权的光耦合技术(例如evaneScent耦合,剪切,V-Grove剪切和微宏弯曲[3,4)可用于拦截数据。监视光电水平是检测窃听攻击的一种方法,但它可能不适用于导致最小或无法检测到的功率水平下降的攻击[5]。比光学功率跟踪更复杂的技术涉及监测接收器的极化状态变化,以使窃听尝试的正常系统变化。早期工作[6]使用分布式光纤传感(DFO)引入了一个系统,该系统可以通过使用已安装的光纤电缆触摸或操纵围栏来检测签名。但是,由于纤维杂质而依赖瑞利和布里鲁因反向散射,使该溶液复合物。此外,需要高速脉冲激光器以基于反向散射脉冲延迟确定漏洞的位置,再加上二氧化双流器以滤除放大的自发噪声的要求,并以其高成本进行贡献。1a)。[7]中的工作研究了不同纤维事件的极化特征,因为在特定时间和频率窗口中极化的序列变化,通过处理Poincar´e球中的极化状态得出(请参阅图通过窃听和有害事件产生的签名是在独特的情节中视觉的,被称为瀑布,使人类安全操作员可以在视觉上区分合法和未经授权的活动。这是一种比[6]的方法更简单,更具成本效益的恶意活动检测方法。然而,由于需要分析瀑布地块的人类专家,因此基于可视化的技术具有有限的适用性和可伸缩性。为了克服现有人类依赖性解决方案的可伸缩性和成本限制,我们引入了一种使用机器学习(ML)算法来分析极化特征的新方法。本文是第一个针对三种电缆类型进行实验收集和分析包含窃听攻击以及其他潜在有害和无害事件的数据集的。我们的方法论是从正常操作条件和无害事件中分析和分析窃听和潜在有害事件的过程,从而允许潜在的大规模光网络部署。提出的方法以92.3%的精度成功地分离了签名。
湍流对远程成像系统的影响表现为图像模糊效应,通常由系统中存在的相畸变量化。可以想象,根据传播体积内的大气湍流强度,可以理解模糊效果。获得湍流强度曲线的一种方法是使用动态范围的雷利信标系统,该系统利用沿策略性的信标沿着传播路径的范围进行了差异,从而有效地推导了影响光学成像系统的模糊畸变的特定路径段贡献的估计。已经设计了一种利用此技术的系统,并且已经构建了用于测试的原型。该系统被称为TARDIS,该系统代表湍流和气溶胶研究动态询问系统。TARDIS是一种光学传感系统,基于在相对不变的湍流诱导的波前扰动的静态时期内动态更改收集传感器和瑞利信标之间的范围。一种概念收集的场景由信标组成,在该信标中,基于激光脉冲和摄像头快门速度,空气分子和气溶胶颗粒反向散射图像在不同距离捕获的距离。获得基于TARDIS的湍流强度曲线的基于测量的估计是基于整理分段的折射率结构参数,𝐶𝐶2,值为大气的特定层。这些𝐶𝐶𝐶𝐶𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠2值是从炸参数段(0𝑖𝑖)中发展出来的,这些值是从Shack-Hartmann波前传感器上的相邻测量值中推导的。从传感系统收集光圈上存在的相位方差的平均值估计炸参数的单个值。跨孔的估计相方差的平均值是由从Shack-Hartmann波前传感器测得的梯度重建的区域倾斜砖中构建的。本文提供了理解大气湍流的基础理论,提供了当前可用的湍流估计技术的参考,并提供了针对TARDIS的细节,层析成像湍流估计方法以及收集概念数据的初始证明的分析。这项研究提供了一种新颖的手段,用于量化大气湍流的强度特征。利用概述的方法,使用了扰动波前的直接测量,这与估计湍流强度曲线的其他方式有不同。由于这种差异,可以使用动态范围的信标来产生湍流概况估计值,以增加对其他方法的置信度,或用作不容易受到相同误差源影响的独立测量技术。此外,由于该技术利用了波前的直接测量,因此可以想象,这可以与用于图像校正的自适应光学系统相关。
软组织肉瘤(STS)是一种发病率低(每 100,000 人中约有 4 人)、异质性高(>70 种亚型)的恶性肿瘤(Yang 等,2019 年;WHO 肿瘤分类,2020 年;Buja 等,2023 年)。此外,大约 50% 的 STS 病例最终会发展至晚期。传统上,晚期 STS 的主要治疗方法是化疗,一线和二线化疗方案包括阿霉素和多西他赛联合吉西他滨(Tian and Yao,2023 年;von Mehren 等,2020 年;George,2019 年)。但该方案的客观缓解率 (ORR) 约为 20%,晚期 STS 患者的中位总生存期约为 12 个月( Tian and Yao,2023 )。因此,需要有效的治疗策略。纳米颗粒白蛋白结合紫杉醇 (nab-paclitaxel) 是紫杉烷家族的抗癌药物( Yared and Tkaczuk,2012 ;Kudlowitz and Muggia,2014 )。它是一种纳米尺寸的紫杉醇,与两种主要紫杉烷(传统紫杉醇和多西紫杉醇)相比,具有更高的水溶性和生物利用度、更低的毒性和更好的抗肿瘤功效( Tian and Yao,2022a ;Mercatali et al.,2022 )。Nab-paclitaxel 已用于治疗多种类型的癌症。此外,最近的报告显示它对治疗 STS 有效(Tian 等,2022a;Tian 和 Yao,2022a)。程序性细胞死亡蛋白 1(PD-1)抑制剂是抗癌治疗中应用最广泛的免疫治疗药物,它们也已被用作 STS 治疗和研究中的新型抗肿瘤疗法(Saerens 等,2021)。尽管最近的证据表明 PD-1 抑制剂单药治疗 STS 疗效较低,但有报道称其在某些组织学亚型的肉瘤中具有良好的疗效(Baldi 等,2022;Kerrison 等,2022)。此外,为了提高 PD-1 抑制剂的疗效,联合化疗已被证明是一种治疗恶性肿瘤(包括 STS)很有前途的方法(Tian 和 Yao,2022b)。 Nab-紫杉醇联合PD-1抑制剂在治疗多种癌症方面取得了有希望的成果(Li等,2021;An等,2023;Sonoda等,2023;Yin等,2023;Zhang等,2023)。然而,评估该组合用于治疗STS的疗效和安全性的临床试验尚未见报道。我们进行了一项单中心、开放标签、单臂II期临床试验,使用nab-紫杉醇联合卡瑞利珠单抗(一种PD-1抑制剂)作为转移性或局部不可切除的STS的二线治疗。我们在此报告该试验的结果,希望为STS患者的治疗和临床研究提供参考。
本出版物的出版得益于以下各方的重要建议和支持:Connecting Business 倡议(Karen Smith)、Direct Relief(Andrew Schroeder 博士)、Field Ready(Dara Dotz)、难民倡议基金(Sara-Christine Dallain)、谷歌(Ruha Devanesan、Alexander Diaz、Christopher Fearon、Sella Nevo)、IBM(Kush Varshney)、ID2020 联盟(Dakota Gruener、Ethan Veneklasen)、印度飞行实验室(Ruchi Saxena 博士)、红十字国际委员会(Veronique Christory、Ann Deer、Massimo Marelli、Vincent Graf Narbel、Stephanie Ridgway、Mark Silverman)、国际移民组织(Alexander Klosovsky 博士)、IrisGuard UK Ltd.(Eva Mowbray)、约翰霍普金斯大学应用物理实验室(Jason A. Lee)、KPHR, Inc.(Kyla Reid)、微软(Cameron Birge)、NetHope(Ray Short)、 Nexleaf Analytics、联合国人权事务高级专员办事处 (Scott Campbell)、海外发展研究所、人道主义政策小组 (Sorcha O'Callaghan、Barnaby Willitts-King)、Tableau 基金会 (Neal Myrick)、英国人道主义创新中心 (Mark Beagan、Ben Ramalingam、Lewis Sida)、联合国儿童基金会 (Kate Alley、Alissa Collins、Mari Denby、Ariana Fowler、Tautvydas Juskauskas、Christina Lomazzo、Toby Wicks)、联合国秘书长办公厅 (David Michael Kelly)、联合国基金会、联合国全球脉动、联合国难民事务高级专员办事处 (Katie Drew、Christopher Earney、Rebeca Moreno Jiménez、Sofia Kyriazi)、联合国信息和通信技术办公室 (Mark Dalton、Lambert Hogenhout)、联合国特别顾问办公室 (Yu Ping Chan、Anoush Tatevossian、Anni Tervo)、联合国世界粮食计划署(Marco Codastefano、Ria Sen、Emma Wadland)、牛津大学(Tsvetelina Van Benthem)、WeRobotics(Sonja Betschart、Patrick Meier)、世界银行(Nadia Piffaretti)、耶鲁大学(Nathaniel Raymond)、Shahrzad Yavari 以及我们在 OCHA 的同事,特别感谢 Andrew Alspach、Simon Bagshaw、Yasin本纳内、莉莲·巴拉哈斯、奥瑞利安·布弗勒、斯图尔特·坎波、胡安·查韦斯-冈萨雷斯、克里斯蒂安·克拉克、苏珊娜·康诺利、卡里姆·艾尔巴亚尔、马库斯·埃尔滕、大卫·格格布尔、阿里·戈克皮纳尔、文森特·胡宾、安娜·杰弗里斯、马琳·坎普·詹森、莱昂纳多·米兰诺、德克-简·奥姆茨格特、丹尼尔·普菲斯特、艾普丽尔·范、卡希夫·雷曼索菲·所罗门、莎拉·特尔福德、安德烈·维瑞蒂、 Nathalie Weizmann、Kathryn Yarlett、全球信息职能团队和战略传播部门。
本出版物的出版得益于以下各方的重要建议和支持:Connecting Business 倡议(Karen Smith)、Direct Relief(Andrew Schroeder 博士)、Field Ready(Dara Dotz)、难民倡议基金(Sara-Christine Dallain)、谷歌(Ruha Devanesan、Alexander Diaz、Christopher Fearon、Sella Nevo)、IBM(Kush Varshney)、ID2020 联盟(Dakota Gruener、Ethan Veneklasen)、印度飞行实验室(Ruchi Saxena 博士)、红十字国际委员会(Veronique Christory、Ann Deer、Massimo Marelli、Vincent Graf Narbel、Stephanie Ridgway、Mark Silverman)、国际移民组织(Alexander Klosovsky 博士)、IrisGuard UK Ltd.(Eva Mowbray)、约翰霍普金斯大学应用物理实验室(Jason A. Lee)、KPHR, Inc.(Kyla Reid)、微软(Cameron Birge)、NetHope (Ray Short)、Nexleaf Analytics、联合国人权事务高级专员办事处(Scott Campbell)、海外发展研究所、人道主义政策小组(Sorcha O’Callaghan、Barnaby Willitts-King)、Tableau 基金会(Neal Myrick)、英国人道主义创新中心(Mark Beagan、Ben Ramalingam、Lewis Sida)、联合国儿童基金会(Kate Alley、Alissa Collins、Mari Denby、Ariana Fowler、Tautvydas Juskauskas、Christina Lomazzo、Toby Wicks)、联合国秘书长办公厅(David Michael Kelly)、联合国基金会、联合国全球脉动、联合国难民事务高级专员办事处(Katie Drew、Christopher Earney、Rebeca Moreno Jiménez、Sofia Kyriazi)、联合国信息和通信技术办公室(Mark Dalton、Lambert Hogenhout)、联合国特别顾问办公室(Yu Ping Chan、Anoush Tatevossian、Anni Tervo)、联合国世界粮食计划署(Marco Codastefano、Ria Sen、Emma Wadland)、牛津大学(Tsvetelina Van Benthem)、WeRobotics(Sonja Betschart、Patrick Meier)、世界银行(Nadia Piffaretti)、耶鲁大学(Nathaniel Raymond)、Shahrzad Yavari 以及我们在 OCHA 的同事,特别感谢 Andrew Alspach、Simon巴格肖、亚辛·本纳、莉莲·巴拉哈斯、奥瑞利安·布弗勒、斯图尔特·坎波、胡安·查韦斯-冈萨雷斯、克里斯蒂安·克拉克、苏珊娜·康诺利、卡里姆·艾尔巴亚尔、马库斯·埃尔滕、大卫·格特格布尔、阿里·格克皮纳尔、文森特·胡宾、安娜·杰弗里斯、马琳·坎普·詹森、莱昂纳多·米兰诺、德克-简·奥姆齐特、丹尼尔·普菲斯特、艾普丽尔·范,卡西夫·雷赫曼、苏菲·所罗门、莎拉Telford、Andrej Verity、Nathalie Weizmann、Kathryn Yarlett、全球信息职能团队和战略传播部门。
1. M. Magri 和 D. Riccobelli。初始应力固体的建模:不可压缩极限下的能量密度结构。SIAM 应用数学杂志,84(6):2342–2364,2024 年 2. D. Riccobelli、P. Ciarletta、G. Vitale、C. Maurini 和 L. Truskinovsky。脆性断裂背后的弹性不稳定性。物理评论快报,132:248202,2024 年 3. NA Barnafi、F. Regazzoni 和 D. Riccobelli。弹性体中松弛配置的重建:心脏建模的数学公式和数值方法。应用力学和工程中的计算机方法,423:116845,2024 4. D. Riccobelli、HH Al-Terke、P. Laaksonen、P. Metrangolo、A. Paananen、RHA Ras、P. Ciarletta 和 D. Vella。扁平和起皱的封装液滴:重力和蒸发引起的形状变形。物理评论快报,130(21):218202,2023 5. Y. Su、D. Riccobelli、Y. Chen、W. Chen 和 P. Ciarletta。电活性介电弹性体气球的可调变形。英国皇家学会学报 A,479(2276):20230358,2023 6. P. Ciarletta、G. Pozzi 和 D. Riccobelli。具有初始应力的弹性板的 F¨oppl–von K´arm´an 方程。英国皇家学会开放科学,9(5):220421,2022 7. D. Andrini、V. Balbi、G. Bevilacqua、G. Lucci、G. Pozzi 和 D. Riccobelli。轴突皮质收缩性的数学建模。脑多物理,3:100060,2022 8. D. Riccobelli。主动弹性驱动受损轴突中周期性串珠的形成。物理评论 E,104(2):024417,2021 9. D. Riccobelli、G. Noselli 和 A. DeSimone。围绕刚性约束盘绕的杆:螺旋和变位。皇家学会学报 A,477(2246):20200817,2021 10. D. Riccobelli 和 G. Bevilacqua。表面张力控制脑器官中脑回形成的开始。固体力学和物理学杂志,134:103745,2020 11. D. Riccobelli、G. Noselli、M. Arroyo 和 A. DeSimone。互锁和可滑动杆的轴对称薄板力学。固体力学和物理学杂志,141:103969,2020 12. D. Riccobelli 和 D. Ambrosi。肌肉的激活作为应力-应变曲线的映射。极端力学快报,28:37–42,2019 13. D. Riccobelli、A. Agosti 和 P. Ciarletta。论初始应力材料的弹性极小值的存在。皇家学会哲学学报 A,377(2144):20180074,2019 14. G. Giantesio、A. Musesti 和 D. Riccobelli。横向各向同性超弹性材料中主动应变和主动应力的比较。弹性杂志,137(1):63–82,2019 15. D. Riccobelli 和 P. Ciarletta。具有残余应力的软不可压缩球体的形状转变。固体数学和力学,23(12):1507–1524,2018 16. D. Riccobelli 和 P. Ciarletta。曲折肿瘤血管的形态弹性模型。国际非线性力学杂志,107:1–9,2018 17. D. Riccobelli 和 P. Ciarletta。软弹性层中的瑞利-泰勒不稳定性。皇家学会哲学学报 A,375(2093):20160421,2017 18. D. Ambrosi、S. Pezzuto、D. Riccobelli、T. Stylianopoulos 和 P. Ciarletta。实体肿瘤是多孔弹性固体,在生长过程中具有化学机械反馈作用。弹性杂志,129(1-2):107–124,2017
1。电荷保护定律。库仑定律。电场强度。叠加原理。连续电荷分布的模型。均匀带电环和灯丝的电场强度。2。电场强度向量的通量。高斯定理用于静电场强度矢量。将高斯定理应用于点充电和平面。3。电场电位。点充电的电势。静电场载体与电势之间的关系。泊松方程。均匀带电的球体的潜力。4。电偶极子。点偶极子的场强和静电电势。外部电场中的电偶极子(力,扭矩,势能)。5。电容的概念。具有不同几何配置的电容器的示例。平行板电容器电容的推导。6。磁场B矢量。带有电流的生物萨瓦特 - 拉普拉斯定律的导体的磁场。具有直流电流的有限长度直导体的磁场。7。磁场矢量的循环定理。带有直流电的环中心的磁场。在长螺线管中的磁场表达。电感。8。电动力。DC电路中的功率。9。广义欧姆定律(差异和整体形式)。Joule-Lenz Law(差异和积分形式)。电磁场。麦克斯韦的方程式以整体和差异形式,其物理含义。不同单位系统中的基本电磁量和定律:SI,CGS和Gaussian。10。来自麦克斯韦方程的电磁平面波方程的推导。电磁平面波的横向性质,电场和磁场之间的关系,电场和磁场的相位振荡。11。平面谐波的极化状态。椭圆形,圆形和线性极化。偏振和自然光,MALUS定律,极化程度。12。光的衍射。 huygens-fresner原理:定义和数学表述。 菲涅耳螺旋,菲涅耳区板。 13。 通过圆形孔和圆形屏幕(菲涅耳区,菲涅耳螺旋)衍射14。 在不透明屏幕的直线边缘处的衍射。 cornu螺旋。 15。 fraunhofer衍射。 衍射模式的属性。 16。 光的干扰。 干扰形成,基本关系和干扰场的特征的条件。 干扰条纹的类型。 17。 电磁波的折射。 Snell定律的推导。 总内部反射。 18。 菲涅尔公式。 19。 20。光的衍射。huygens-fresner原理:定义和数学表述。菲涅耳螺旋,菲涅耳区板。13。通过圆形孔和圆形屏幕(菲涅耳区,菲涅耳螺旋)衍射14。在不透明屏幕的直线边缘处的衍射。cornu螺旋。15。fraunhofer衍射。衍射模式的属性。16。光的干扰。干扰形成,基本关系和干扰场的特征的条件。干扰条纹的类型。17。电磁波的折射。Snell定律的推导。总内部反射。18。菲涅尔公式。19。20。在反射和折射过程中电磁波极化。电磁表面波。使用菲雷斯公式的应用:布鲁斯特定律。在两个介质边界处电磁波的相位关系。光的分散。频率和空间分散。频率分散的电子理论。频率频率依赖性。在分散介质中电磁波包的传播。组速度。瑞利公式。21。培养基的非线性极化。 非线性光学现象(频率的谐波产生,加法和减法,自我关注,刺激散射)。 22。 电磁波在介电波导中传播的特征。 23。 光学平面波导。 介绍波导模式。 24。 光纤。 纤维结构。 光纤中的光传播。 25。 激光的分类(类型)。 各种类型激光器的特征。 激光辐射的主要特征及其评估方法。 26。 半导体中的吸收和光辐射的产生。 发光二极管。 最简单的半导体激光器的设计和操作。 27。 光子晶体。 使用光子晶体用于信息传输,存储和处理。 光子晶体中带结构的形成。培养基的非线性极化。非线性光学现象(频率的谐波产生,加法和减法,自我关注,刺激散射)。22。电磁波在介电波导中传播的特征。23。光学平面波导。介绍波导模式。24。光纤。纤维结构。光纤中的光传播。25。激光的分类(类型)。各种类型激光器的特征。激光辐射的主要特征及其评估方法。26。半导体中的吸收和光辐射的产生。发光二极管。最简单的半导体激光器的设计和操作。27。光子晶体。使用光子晶体用于信息传输,存储和处理。光子晶体中带结构的形成。