抽象蛋白质相互作用网络对于复杂的细胞过程至关重要。然而,在高度专业的细胞和组织中阐明发生的蛋白质相互作用具有挑战性。在这里,我们描述了整个斑马鱼中依赖性生物素标记的新方法的开发和应用。使用有条件稳定的GFP结合纳米病毒将生物素连接酶靶向感兴趣的GFP标记的蛋白,我们使用现有的GFP标记的转基因斑马鱼线显示了组织特异性的蛋白质组学分析。我们证明了这种方法的适用性,称为Blitz(标记的斑马鱼中的生物素标记),在不同的细胞类型(如神经元和血管内皮细胞)中。我们应用了这种方法来识别骨骼肌中洞穴外套蛋白的相互作用。使用此系统,我们为密切相关但功能上不同的cavin4和cavin1蛋白定义了体内肌肉细胞内的特定相互作用网络。
•保持通道的流量1-3打开,并在〜2.5μm和6μm之间移动陷阱1,以确定是否形成了系绳,通过观察力响应。对于单个系绳,测得的FD曲线遵循双链DNA的蠕虫样链模型,轮廓Lenght为17.853 bp,并且在60 Pn处具有过度拉伸的高原。双重系数显示,距离较短的力响方面的发作将使高原过高的高原。双 - 毛线可以通过增加珠子之间的距离而打破,但是,也可能发生Tethers(部分)转换为杂种,而不是导致单个常规的Tethers。如果经常捕获多个系数,则可以降低注射器中的DNA浓度。
在整个进化过程中,大多数酿酒酵母菌株都失去了合成生物素的能力,生物素是几种羧化酶的必不可少的辅助因子。结果,必须从环境中吸收必需的维生素或其前体,并经常在发酵中补充以达到高细胞密度。与生物素无关的酿酒酵母菌株的工程是消除对外部生物素供应的需求。在此,我们通过工程旁乙酰辅酶A羧化酶(一种在合成脂肪酸的合成中的基本生物素依赖性酶)来描述了与生物素无关的酵母菌菌株的构建。除了无生物素培养基中的生长量完全挽救外,与生物素相比,酿酒酵母菌株的生长显着改善。除了其工业相关性之外,此处报道的酵母菌菌株在基础研究领域可能很有价值,例如,用于开发新的选择标记或提高生物蛋白 - 链霉亲蛋白技术在生物系统中的多功能性。
A部分 - 生物素化模板是通过质粒或合成DNA构建体中靶序列的PCR扩增产生的。此过程使用T7启动子上游至少30-100个碱基对的生物素化正向引物和非生物素化的反向引物。在设计QPCR分析以评估模板浸出时,T7启动子和正向引物之间的距离更大。另外,可以使用Biotin-DUTP在5'悬垂序列中通过填充填充物进行生物素化,这取决于正确的质粒设计。然后将生物素化模板直接固定到dynabeads
摘要:癌症是全球主要死亡原因之一,其治疗仍然极具挑战性。癌症治疗的有效性在很大程度上取决于药物的肿瘤特异性递送。纳米粒子药物递送系统已经开发出来以避免传统化疗的副作用。然而,根据最新的建议,未来的纳米医学应主要集中在基于配体-受体识别的纳米载体的主动靶向,这可能比人类癌症治疗中的被动靶向更有效。然而,由于肿瘤微环境的复杂性,单配体纳米药物的功效仍然有限。因此,NPs 朝着额外的功能方向发展,例如 pH 敏感性(高级单靶向 NPs)。此外,还开发了在同一药物递送系统上包含两种不同类型靶向剂的双靶向纳米粒子。先进的单靶向纳米粒子和双靶向纳米载体在细胞选择性、细胞摄取和对癌细胞的细胞毒性方面表现出比传统药物、非靶向系统和没有额外功能的单靶向系统更优越的特性。叶酸和生物素被用作癌症化疗的靶向配体,因为它们可用、廉价、无毒、无免疫原性且易于修改。这些配体可用于单靶向和双靶向系统,尽管后者仍然是一种新方法。本综述介绍了用于抗癌药物输送的单靶向或双靶向纳米粒子开发的最新成果。
摘要:链霉亲和素-皂素可视为一种“次级”靶向毒素。科学界巧妙而卓有成效地利用了这种结合物,使用多种生物素化的靶向剂将皂素送入选定的细胞中以消除。皂素是一种核糖体失活蛋白,当其进入细胞内时会导致蛋白质合成抑制和细胞死亡。链霉亲和素-皂素与生物素化的细胞表面标记分子混合,可产生强大的结合物,可用于体外和体内行为和疾病研究。链霉亲和素-皂素利用皂素的“分子手术”功能,创建了模块化靶向毒素库,可用于从潜在疗法的筛选到行为研究和动物模型等各种应用。该试剂已成为学术界和工业界广泛发表和验证的资源。链霉亲和素-皂素的易用性和多样化功能继续对生命科学行业产生重大影响。
邻近依赖性生物素化与质谱联用可以表征亚细胞蛋白质组。该技术通过揭示亚突触蛋白质网络(例如突触间隙和突触后密度)显著推动了神经科学的发展。在这种详细水平上分析蛋白质对于理解神经元连接和传递的分子机制至关重要。尽管邻近标记最近成功应用于各种神经元类型,但它尚未用于研究血清素系统。在这项研究中,我们发现了血清素对基于辣根过氧化物酶 (HRP) 的生物素化的未报道的抑制机制。我们的结果表明,血清素显着降低 HEK293T 细胞和原代神经元中不同生物素-XX-酪胺 (BxxP) 浓度的生物素化水平,而多巴胺的干扰最小,突出了这种抑制的特异性。为了抵消这种抑制,我们证明了 Dz-PEG(一种通过偶氮偶联反应消耗血清素的芳基重氮化合物)可恢复生物素化效率。无标记定量蛋白质组学证实血清素会抑制生物素化,而 Dz-PEG 可有效逆转这种抑制。这些发现强调了在邻近依赖性生物素化研究中考虑神经递质干扰的重要性,尤其是对于神经科学中细胞类型特异性分析而言。此外,我们还提供了一种缓解这些挑战的潜在策略,从而提高此类研究的准确性和可靠性。
图 3:TDP-43-TAR-32 相互作用的特异性。生物素化的 TAR-32 寡核苷酸和生物素化的反向互补 TAR-32 DNA 寡核苷酸与 TDP-43 蛋白 (50 ng/µL) 的结合比较。
至少 20 nt 长度的探针已经过测试。探针可以设计为 3´ 或 5´ 生物素/脱硫生物素亲和基团,用于链霉亲和素富集 (NEB #S1421)。为获得最佳效果,受保护的 DNA:RNA 杂交区域应为 4 或 5 个核苷酸
近年来,研究工作的吞吐量和复杂性在保持相同质量水平的同时稳步增长。在实验设置和实验室基础架构方面,通过应用可用硬件和软件技术的新组合可以改善研究结果。因此,在本次会议上,我们想将来自不同学科的科学家汇集在一起,以分享他们与新技术和实验设置的经验。一个共同的线程是在生物光谱中使用超快激光器。生物素化学的研究领域将生命科学,环境科学和医学与创新的光学技术结合在一起。生物植物学包括所有光学方法,用于研究生物材料和系统的结构,功能,机械,生物学和化学性质。生物素化学为基础研究,生物技术和医学提供了巨大的机会。例如,借助生物素化学,可以更好地理解疾病的原因,以便将来预防它们,或者至少更早,更准确地诊断它们,从而更有效地对待它们。借助生物素化学,可以更好地理解疾病的原因,以便将来预防它们,或者至少更早,更准确地诊断它们,从而更有效地对待它们。