位于埃及北西奈的 El-Rawda 太阳能盐场是由 Bradawil 泻湖的水蒸发形成的。蒸发导致石膏、岩盐矿物和盐滩的沉淀,随后覆盖泻湖的南部和东部地区。本研究采用散弹枪宏基因组学方法、illumine 平台和生物信息学工具来研究太阳能盐场中嗜盐微生物群落的分类组成和功能多样性。从盐水样本中获得的宏基因组读数与从沉积物样本中获得的读数相比数量更多。值得注意的是,盐水样本的主要特征是古菌丰富,而沉积物样本则以细菌为主。这两个样本的真核生物丰度都相对较低,而病毒只在盐水样本中发现。此外,功能途径的比较分析显示盐水和沉积物样本中存在许多与中心代谢和蛋白质加工相关的重要过程。简而言之,这项研究对了解埃及嗜盐生态系统做出了宝贵贡献,提供了对其微生物多样性和功能过程的深入了解。
先前的研究表明,微生物群落可以藏有去除的基石物种,其去除可能会导致微生物组结构和功能的急剧变化。然而,仍然缺乏一种有效的方法来系统地识别微生物群落中的基石物种。在这里,我们提出了一个基于深度学习以解决这一挑战的数据驱动的Keystone识别(DKI)框架。我们的关键思想是通过使用从该栖息地收集的微生物组样本训练深入学习模型,从特定栖息地中隐式学习微生物群落的组装规则。训练有素的深度学习模型使我们能够通过对去除物种的思想实验进行思想实验来量化该栖息地中任何微生物组样本中每个物种的社区特定钥匙ston。我们使用合成数据系统地验证了该DKI框架,并应用DKI来分析真实数据。我们发现,不同社区中中位数钥匙长高的那些分类单元表现出强大的社区特异性。提出的DKI框架展示了机器学习在解决社区生态中的基本问题方面的力量,为复杂微生物社区的数据驱动管理铺平了道路。
过多的碳排放加剧了气候变暖,对人类社会和地球生态系统构成了严重的挑战(Liu and Deng,2011年)。森林是土地生态系统的重要组成部分,贡献了地下碳的大部分和近一半的地下碳,在调节全球碳周期以及应对气候变化方面起着至关重要的作用(Yun等,2018)。大约77%的全球地面碳池存储在森林生态系统中(Wang and Wang,2015年)。估计森林生态系统碳储存将有助于我们更好地了解森林在全球变暖中的作用(Fang and Wang,2001)。积累方法是估计森林碳储存的常见方法。通过抽样和测量来计算森林中主要树种的平均能力(T/m)。根据森林总库存计算生物质,并根据生物量和碳量之间的转化系数计算碳存储量(Williams等,2000)。森林碳存储与环境因素密切相关。研究(Hagedorn等,2003; Yue等,2018)表明,土壤C/N和总氮含量与森林生态系统的碳存储显着相关。但是,关于森林储存与根际土壤微生物之间相关性的系统研究很少。
本文报告了对生物塑料厌氧降解和转化为沼气的微生物适应的新研究结果。进行了三种顺序的厌氧消化(AD)运行,以支持微生物适应于两种不同的生物塑料,基于淀粉的(SBS)和多乳酸(PLA)。SBS和PLA生物塑料的AD被接种物适应AD后对基板的适应而受到青睐。sbs转化为沼气增加了52%(从94 nl kgvs -1),与淀粉降解细菌的生长相关,例如氢孢子虫,卤代菌和卤素。PLA厌氧降解增长了97%(从395至779 NL Miogas KGVS -1),这与已知的Pla降解者(如替代性降解剂)(如替代菌粒,甲烷疗法生物杆菌)和tepidanaerobacter的适应性有关。微生物过度化似乎是一种合适的低成本策略,可以通过促进其厌氧生物降解并转化为沼气来增强生物塑料循环。
摘要:这项研究的目的是研究散装剂对堆肥厨房废物的成熟和气态排放的影响。组成实验是由选定的核心细菌剂和通用细菌剂进行20天的。结果表明,核心微生物剂的添加有效地控制了典型的气味产生化合物的发射。核心和通用细菌剂的添加大幅降低了NH 3排放量94%和74%,并使H 2 S排放量降低了78%,27%。堆肥过程中核心微生物剂的施用将峰值温度升高至65℃,并且在有效的温度演化方面(连续8天> 55℃)。加入了核心微生物剂的初始值,有机物降解降低了65%,而对于其他治疗方法,减少量很小。将核心微生物剂添加到厨房废物中,产生了成熟的堆肥,其发芽指数较高(GI)为112%,而其他治疗方法并未完全成熟,GI的GI <70%。微生物分析表明,堆肥的核心微生物剂增加了魏森氏菌,Ignatzschineria和菌孢子的相对丰度。网络和冗余分析(RDA)表明,核心微生物剂增强了细菌与八个指标之间的关系(p <0.01),从而改善了堆肥过程中化合物的生物转化。总体而言,这些结果表明,仔细选择适当的接种微生物对于改善厨房废物的生物转化和营养含量堆肥至关重要。
近年来,在确定影响土壤微生物组结构的土壤特性方面取得了很大进展。相比之下,微生物对土壤栖息地的影响较少,而先前的大多数研究都侧重于微生物对土壤碳和氮动力学的贡献。然而,土壤微生物不仅参与养分循环和有机物转化,而且还通过各种生化和生物物理机制改变土壤栖息地。这种微生物介导的土壤特性的修饰可以对微生物组的局部影响,并具有明显的生态分析。在这篇综述中,我们描述了微生物在考虑土壤物理学,水文和化学的过程中修改土壤环境的过程。我们探讨了微生物 - 土壤相互作用如何产生反馈循环,并讨论如何对土壤特性的微生物介导的修改作为管理和操纵微生物组以打击土壤威胁和全球变化的替代途径。
本研究以中国科学院上海海洋大学环境科学与工程学院为研究背景,采用固相萃取、实时荧光定量PCR和宏基因组学方法进行分析。本研究的主要内容为:(1)探讨万峰湖抗生素及耐药基因的赋存特征;(2)了解沉积物中微生物群落的结构组成;(3)分析环境因素及抗生素对耐药基因分布的影响,探究抗生素及耐药基因与沉积物中微生物的共现关系。本研究结果揭示了珠江上游万峰湖抗生素及耐药基因的分布特征及沉积物微生物群落,探讨了抗生素、耐药基因与微生物之间的关系。
至10 6细胞/m 3对人类井的潜在健康影响[1]。文件及其同事总结了城市和农村之间空气中微生物的丰度和多样性的差异,并进一步透露,由于较高的丰度和多样化的细菌和真菌,农村空气中的微生物组更健康[2]。然而,空气中的病原体会威胁人类健康,并通过在皮肤,粘膜以及消化和呼吸道上定位,从而威胁人类健康[3]。潜在的微生物病原体在空气中无处不在,许多研究报道了许多从空气和粉尘中分离出的致病细菌和真菌[4]。由于追求人类以寻求更好的空气质量,已经探索了空气中微生物群落的多样化和复杂组成及其对人类健康的潜在风险。从理论上讲,由于空间和时间变化较大,应根据主动空气采样评估空气中的微生物[5]。然而,最近的大多数研究通过如今的短期采样或灰尘收集来探讨了空气中的微生物群落,该群落无法捕获整体微生物情况,到目前为止,很少有研究报告说,报道了在高时间分辨率(例如小时时间序列)下机源性微生物的动态。这样的小时 - 空气中微生物组成界的比例表征将提供更好地了解机载微生物与大气变化之间关系的潜力。环境中的微生物群落通常由一些丰度(即丰富的物种)和更多低
氢氧化铜是一种广谱铜杀菌剂,通常用于控制作物真菌和细菌性疾病。除了控制靶向病原体外,氢氧化铜还可能影响植物层生态系统中其他非靶向微生物。在施用杀菌剂后的四个时间点(在喷涂之前和5、10和15天之前),通过使用Illumina高通量测序技术和生物学工具研究了患病和健康的烟草微生物微生物对氢氧化铜应激的反应。结果表明,健康群体的微生物组社区比疾病组更受影响,而真菌群落比细菌群落更敏感。疾病组中最常见的属是替代植物,波兰菌,cladosporium,pantoea,ralstonia,pseudomonas和sphinghomonas;在健康组中,这些是替代人,cladosporium,symmetrospora,ralstonia和pantoea。喷涂后,健康和患病组的真菌群落的α多样性在5天后下降,然后显示出越来越多的趋势,健康组在15天时显着增加。健康和患病群体中细菌群落的α多样性在15天时增加,而健康的组有显着差异。在健康和患病的叶片的真菌群落中,替代品和cladosporium的相对丰度降低了,而波动脉症,stagonosporopsis,Symmetroppora,Epicoccum和Phoma的相对丰度则增加。Pantoea的相对丰度首先减少,然后增加,而Ralstonia,Pseudomonas和Sphingomonas的相对丰度首先增加,然后在健康和患病的叶片的细菌群落中减少。虽然氢氧化铜降低了致病真菌替代性和cradosporium的相对丰度,但它也导致有益细菌(例如放线菌和Pantoea)的降低,并增加了潜在的病原体,例如波里米亚和稳定性。用氢氧化铜处理后,患病组的代谢能力得到了改善,而健康组的代谢能力得到了显着抑制,随着应用时间的延长,代谢活性逐渐恢复。结果揭示了在氢氧化铜应激下,微生物群落组成和健康和患病的烟草的代谢功能的变化,为未来对植物层的微生态保护的研究提供了理论基础。
对温度和食物资源的适应是土壤动物(尤其是冷血动物)在其栖息地生存的两种主要适应策略,而肠道菌群会影响这些适应策略。蚯蚓通常被称为生态系统工程师,因为它们是土壤中动物生物量的最大组成部分。它们被视为土壤质量、健康和功能三角中的重要指标。然而,肠道菌群在蚯蚓大规模环境适应中的作用仍不清楚。我们探讨了中国东北(1661 公里)两种广泛分布的蚯蚓(Eisenia nordenskioldi Eisen 和 Drawida ghilarovi Gates)的肠道细菌群落及其在环境适应中的作用。根据我们的研究结果,肠道细菌群落的 α 多样性随着纬度的增加而降低,肠道细菌群落组成受年平均温度(MAT)和