摘要。目前的工作研究了纳米材料和微生物的存在在可伸缩的表面上不可压缩的非牛顿sutterby液体的生物概要转向运动。液体在整个泄漏区域流动,并受均匀垂直磁场的影响。除了指数空间的热源外,欧姆和非牛顿耗散还建立了能量扩散,而纳米材料的传播则可以通过化学反应到达。物理构型被力,温度,纳米体积分数和微生物的公式以及适当的边框标准覆盖。这项工作的新方面由于考虑了粘度与温度,微生物和纳米颗粒的指数分布的考虑。此外,鉴于其较大的应用范围,微生物在流过拉伸表面的流程中的参与增加了另一个创新的特征。非线性部分差分公式的最重要格式被转换为普通的,提供合适的匹配转换器。这些公式通过四阶runge-kutta数值技术进行了审查,并支持拍摄标准。因此,实现了客观分布的算术和图形基础。检查结论,并总结了重大结果。从结果中完成了几种重要的身体。热轮廓改善了有效的因素,这是可以在各种含义中采用的出色规则。微生物的积累随着粘度变化的增加而增加,而随着小子,刘易斯数量和生物对流常数的增长,它会降低。此类发现可能对通过相似的流量期望这些微观生物的行为有用。
1拉贾斯坦邦中央大学NH-8微生物学系,班达·辛德里(Bandar Sindri),Dist-ajmer 305817,印度拉贾斯坦邦(Rajasthan); raimanu1998@gmail.com(M.R.); inshad@curaj.ac.in(I.A.K。)2 AMRIT校园化学系科学技术研究所,Tribhuvan University,Lainchaur,加德满都44600,尼泊尔; namunapaudel7@gmail.com 3印度印度大学印度理工学院生物医学工程学院,兰卡 - 瓦拉纳西221005,印度北方邦; sesesak@yahoo.com 4 Ferrara大学转化医学系,意大利Ferrara 44121; cet@unife.it(D.G. ); veronica.tisato@unife.it(v.t。) 5中心止血和血栓形成,费拉拉大学,44121 Ferrara,意大利6 Opentrons Labworks Inc.,布鲁克林,美国纽约,11201,美国; Anurag.kanase@opentrons.com 7 Max Planck固态研究所,德国斯图加特70569; a.schulz@fkf.mpg.de 8德国联邦风险评估研究所(BFR),化学与产品安全部,Max-Dohrn-Straße8-10,10589柏林,德国 *通信:ajay-vikram.singh@bfr.bfr.bfr.bund.bund.de†这些作者对这些工作贡献了这些作品。2 AMRIT校园化学系科学技术研究所,Tribhuvan University,Lainchaur,加德满都44600,尼泊尔; namunapaudel7@gmail.com 3印度印度大学印度理工学院生物医学工程学院,兰卡 - 瓦拉纳西221005,印度北方邦; sesesak@yahoo.com 4 Ferrara大学转化医学系,意大利Ferrara 44121; cet@unife.it(D.G.); veronica.tisato@unife.it(v.t。)5中心止血和血栓形成,费拉拉大学,44121 Ferrara,意大利6 Opentrons Labworks Inc.,布鲁克林,美国纽约,11201,美国; Anurag.kanase@opentrons.com 7 Max Planck固态研究所,德国斯图加特70569; a.schulz@fkf.mpg.de 8德国联邦风险评估研究所(BFR),化学与产品安全部,Max-Dohrn-Straße8-10,10589柏林,德国 *通信:ajay-vikram.singh@bfr.bfr.bfr.bund.bund.de†这些作者对这些工作贡献了这些作品。
微污染物的去除效率在不同的有氧废水处理厂有很大变化,从而导致其在地表和地下水中经常检测。季节性温度变化是影响植物性能的主要因素,但目前尚不清楚温度变化的延长时期如何影响微生物组和微污染物生物转化。这项工作研究了活性污泥系统中长期温度变化对微生物动力学的影响,以及对微污染物生物转化的影响。测序批次反应器用作模型系统,研究了4 - 40℃的温度范围。16S rRNA扩增子测序表明,温度驱动微生物结构(GDNA)和活性(RNA),而不是时间,并且在15°C低于15℃和高于25℃的情况下,微生物群落在20℃时具有最丰富,更多样化,而在急剧和更具体的分类中则占优势,并且更具体的分类占高度的高度,以更高的时间高度高度的温度,并且占优势。这表明较少的分类单元可能负责在极端温度下维持活化污泥中的生物转化能力。微施加剂生物转化速率主要偏离15℃以下的经典Arrhenius模型,高于25℃,这表明长期暴露于温度变化会导致温度引起的分类转移,从而导致不同的生物转化途径超过不同温度范围的不同集合。
研究了由生物防治剂产生的抗真菌剂绿青霉素与不产生绿青霉素的微生物的生物转化。结果表明,一些环境非目标微生物能够还原已知的植物毒素绿青霉素及其 3-差向异构体中的绿青霉素。因此,这种还原在某些情况下通过解毒机制发生,在植物病害的生物防治中可能对植物造成灾难性的影响。然而,发酵/生物转化工艺可能是制备这种植物毒素的有效方法。
生物转化将各种食物废物的生物转化为特定有价值的产品,例如单细胞蛋白(SCP)具有同时的潜力,可以通过获得经济食品和饲料产品来解决全球饮食蛋白缺乏症,并通过使用这些废物作为高营养价值生产的基质来获得环境污染物的大量缓解。因此,本研究旨在评估使用酿酒酵母和hansenii的酵母分离株生产SCP的可行性,并评估生成的SCP的蛋白质质量。结果表明,用于生长酵母菌株的马铃薯果皮培养基是生产SCP的最佳培养基,而酿酒酵母大于D. hansenii,用于生产更高量的生物质,粗蛋白,总氨基酸和核黄素。各种废物中各种特定有价值的SCP的生物转化代表了解决蛋白质缺乏问题并通过利用食物废物作为底物来减少环境污染物的有希望的前景。关键词:单细胞蛋白,食物废物,酵母液态发酵,生物量,氨基酸,核黄素。
摘要生产天然生物食品的生物技术途径比合成创建的产品更优选。这样的途径是生物转化,它需要使用用作生物催化剂的微生物将一种物质转化为另一种物质。绿色化学中的一个关键过程是生物转化,这导致了许多有价值的化学物质的生物产生。由于其独特的香气,香草素是世界上使用最广泛的口味之一。它用于冰淇淋,蛋糕,饼干,巧克力和化妆品。与化学合成的香草蛋白相比,生物产生的香草蛋白很少或没有自由基,这就是为什么它对人类的负面影响很小或没有负面影响。生物学前体,例如丁香酚和异烯醇以及阿魏酸,可用于香草蛋白的生产中。从土壤中分离出纯细菌培养物(分离株编码为DSH1001至DSH1004),并通过各种生化反应鉴定为革兰氏阴性棒。通过16S核糖体测序带有登录号OR140859鉴定的微生物可以将异烯醇转换为香草素。还研究了其生物转化的同烯醇的能力。使用HPLC,在37°C,pH 7.2,搅拌速率150 rpm的温度下进行最终筛选所选细菌分离株,初始isoeugenol浓度为0.01%。食品行业可以通过生物学手段从香草素的商业生产中获利。关键字:Aeromonas Veronii,生物转化,HPLC,Isoeugenol,登录号OR140859,Vanillin,NCBI。
图4。砷矿甲基转移酶(ARSM)基因在鳟鱼湖,钢铁湖和基拉尼湖的周围DNA中检测到了PCR,使用靶向该基因保守区域的退化引物。从三个南部海湾声音湖中收集了植物,砷湖:鳟鱼湖(<1 ppb),钢铁湖(〜2 ppb)和基拉尼湖(〜20 ppb)。DNA以不同的浓度在聚合酶链反应(PCR)中用作模板,以不同的浓度:1 ng/ul,2 ng/ul和4 ng/ul。用两个引物对之一进行 PCR:与16S rRNA或ARSM基因互补。琼脂糖凝胶电泳。该图显示了用荧光染料,分子量(MW)梯子和可变标签可视化的凝胶。16S rRNA引物预计将导致111个碱基对(BP)的PCR产物,并且ARSM引物(MF1和MR2)预计将导致302至346 bp之间的PCR产物。
CSIR建立了一个生物转化平台,该平台着重于化学生产的替代途径。该平台针对本地生产,并取代包括乳酸在内的生物平台化学物质的进口。这种转变将对生物经济有直接影响。当前的生物过程使工业原料或副产品(例如甘蔗糖蜜或甘蔗汁)的生物转化能够通过土著微生物产生乳酸。该技术已经从概念验证阶段发展,以达到6个技术准备水平(TRL)。以30升比例进行的这种优化的生物处理显示,糖原料向最终产物的转化率超过85%,在上游过程中滴度超过100g/l。此外,已经开发了多种下游加工方法并优化了从75%到92%的纯化产品,使其非常适合在工业,食品和化妆品领域的各种应用。
体内大分子会发生什么?是什么驱动抗体 - 药物缀合物(ADC)的结构活性关系和体内稳定性?这些相互关联的问题越来越相关,因为ADC作为有影响力的治疗方式的重新重要性以及我们对ADC结构决定因素的理解中存在的差距,而ADC是体内稳定性的ADC结构决定因素。复杂的大分子(例如ADC)可能会因其复杂的结构而发生变化,因为它们可能会在接头,有效载荷和/或在修饰的共轭位点上发生生物转化。此外,由于难以识别或量化大型大分子上的较小变化,ADC代谢的解剖提出了重大的分析挑战。我们采用了免疫接触LCMS方法来评估四种不同铅ADC中药物抗体比(DAR)谱的体内变化。这种全面的特征表明,随着互联网的选择,有助于ADC设计的关键结构决定因素是选择接头,因为复古 - 米克尔脱糖与硫二酰亚胺的水解反应之间的竞争导致体内出色的共轭稳定性。这些数据与其他因素结合了其他因素,告知AZD8205,B7-H4指导的半胱氨酸结合的ADC,带有新型的拓扑异构酶I抑制剂有效载荷,并具有耐用的DAR,目前正在临床上研究固体恶性肿瘤(NCT051223482)。这些结果突出了研究大分子生物转化并阐明ADC结构 - 体内稳定性关系的相关性。这项工作的全面性质增加了对我们的