本文报告了对生物塑料厌氧降解和转化为沼气的微生物适应的新研究结果。进行了三种顺序的厌氧消化(AD)运行,以支持微生物适应于两种不同的生物塑料,基于淀粉的(SBS)和多乳酸(PLA)。SBS和PLA生物塑料的AD被接种物适应AD后对基板的适应而受到青睐。sbs转化为沼气增加了52%(从94 nl kgvs -1),与淀粉降解细菌的生长相关,例如氢孢子虫,卤代菌和卤素。PLA厌氧降解增长了97%(从395至779 NL Miogas KGVS -1),这与已知的Pla降解者(如替代性降解剂)(如替代菌粒,甲烷疗法生物杆菌)和tepidanaerobacter的适应性有关。微生物过度化似乎是一种合适的低成本策略,可以通过促进其厌氧生物降解并转化为沼气来增强生物塑料循环。
摘要:微生物学上影响的腐蚀(MIC)是在存在微生物及其生物膜的情况下材料降解的过程。这是一种环境辅助的腐蚀类型,非常复杂且具有挑战性。不同的金属材料,例如钢合金,镁合金,铝合金和钛合金,据报道有MIC对其应用的不利影响。尽管许多研究人员报告了细菌作为微生物腐蚀的主要罪魁祸首,但已发现包括真菌,藻类,古细菌和地衣在内的其他几种微生物在金属和非金属表面上引起MIC。但是,对真菌,藻类,古细菌和地衣引起的麦克风的关注更少。在本文论文中,已经详细讨论了不同微生物,包括细菌,真菌,藻类,古细菌和地衣的影响,对工程材料的腐蚀特性进行了详细讨论。本综述旨在总结直接或间接导致结构材料降解的所有腐蚀性微生物。指责每种MIC病例的细菌,而无需对腐蚀部位进行适当研究,并深入研究生物膜和分泌的代谢物可能会在理解材料失败的实际原因方面造成问题。要在任何环境中识别真正的腐蚀剂,研究在特定环境中存在的各种微生物非常重要。
临床上可用的小直径合成血管移植物(SDVG)由于移植物治疗受损而具有不令人满意的通畅率。因此,自体植入物仍然是小容器更换的金标准。可生物可吸收的SDVG可能是另一种选择,但是许多聚合物的生物力学特性不足,导致移植物衰竭。为了克服这些局限性,开发了一种新的可生物降解的SDVG,以确保安全使用,直到形成足够的新组织。SDVG是使用由热塑性聚氨酯(TPU)和新的自我增强TP(U-eREA)(TPUU)组成的聚合物混合物的电纺。通过细胞播种和血流相容性测试在体外测试生物相容性。在长达六个月的一段时间内,在大鼠中评估体内性能。 自体大鼠主动脉植入物充当对照组。 扫描电子显微镜,微型计算层析成像(μCT),组织学和基因表达分析被应用。 tpu/tpuu移植物显示出水孵育后生物力学特性的显着改善,并表现出极好的细胞和血流相容性。 所有移植物均保留专利,尽管壁稀疏,但生物力学特性还是足够的。 没有观察到炎症,动脉瘤,内膜增生或血栓形成。 对移植物愈合的评估显示了TPU/TPUU和自体导管的相似基因表达纤维。 这些新的可生物降解,自我强化的SDVG可能是未来临床使用的有前途的候选者。在长达六个月的一段时间内,在大鼠中评估体内性能。自体大鼠主动脉植入物充当对照组。扫描电子显微镜,微型计算层析成像(μCT),组织学和基因表达分析被应用。tpu/tpuu移植物显示出水孵育后生物力学特性的显着改善,并表现出极好的细胞和血流相容性。所有移植物均保留专利,尽管壁稀疏,但生物力学特性还是足够的。没有观察到炎症,动脉瘤,内膜增生或血栓形成。对移植物愈合的评估显示了TPU/TPUU和自体导管的相似基因表达纤维。这些新的可生物降解,自我强化的SDVG可能是未来临床使用的有前途的候选者。
摘要:生物学方法目前是从土地上去除有害物质的最常用方法。这项研究工作着重于对石油污染土地的修复。研究了脂肪液烃和PAHS的生物降解,因此研究了生物放射B1和B2的结果。生物制备B1是根据自毒细菌开发的,由菌株Dietzia sp。in118,gordonia sp。in101,53 In Mycolicibacterium frederiksbergense,119 In119 In rhodococcus erythropolis,113 In113和Raoultella sp。in109,而生物制剂B2富含真菌,例如sydowii,asspergillus versicolor,candida sp。,cardosporium halotolerans,penicillium chrysogenum。由于在接种生物制备B1的土壤下进行的生物降解测试的结果,TPH和PAH的浓度分别降低了31.85%和27.41%。用生物制备B2的土壤接种b2更有效,因此TPH的浓度降低了41.67%,PAH降低了34.73%。另一个问题是使用Zea Mays的预处理G6-3B2土壤的植物修复。测试是在三个系统(系统1-Soil G6-3B2 + Zea Mays; System 2-Soil G6-3B2 +生物制品B2 + Zea Mays; System 3-SOIL G6-3B2 + BIPGA-PGA + ZEA MAYS)持续6个月。在系统3中获得了最高程度的TPH和PAH降低,分别为65.35%和60.80%。使用Phytotoxkit TM,Ostracodtoxkit TM和Microtox®在非接种系统1中记录了最低的植物修复效率,其中TPH的浓度降低了22.80%,PAH降低了18.48%。
1农业学院农业学系,Zagazig大学,Zagazig 44511,埃及; nahedelwafai19@gmail.com(N.A.E.-W。); ayafarrag2018@gmail.com(A.M.I.F.); Howaida.m.labib@gmail.com(H.M.A.-B。); mhegazy7777@gmail.com(m.i.h.)2美国科学与艺术学院化学系,阿卜杜勒齐兹国王大学,拉比21911,沙特阿拉伯; salgoul@kau.edu.sa 3 3生物科学系科学与艺术学院,国王阿卜杜勒齐兹大学,拉比21911,沙特阿拉伯; mfashkan@kau.edu.sa(M.F.A.); dalquwaie@kau.edu.sa(d.a.a.-q。)4 Bisha大学科学系生物学系,Bisha 61922,沙特阿拉伯; faalqahtani@ub.edu.sa 5 5 shimaa_amin@agr.asu.edu.eg.eg 6聚合物和颜料部,国家研究中心,Dokki,Giza 12622,埃及; naderdiab2003@yahoo.com(M.N.I. ); ayehia1935@gmail.com(A.A.Y。) 7阿拉伯联合大学科学院生物学系,阿拉伯联合酋长国15551,阿拉伯联合酋长国 *通信:ktarabily@uaeu.ac.ae4 Bisha大学科学系生物学系,Bisha 61922,沙特阿拉伯; faalqahtani@ub.edu.sa 5 5 shimaa_amin@agr.asu.edu.eg.eg 6聚合物和颜料部,国家研究中心,Dokki,Giza 12622,埃及; naderdiab2003@yahoo.com(M.N.I.); ayehia1935@gmail.com(A.A.Y。)7阿拉伯联合大学科学院生物学系,阿拉伯联合酋长国15551,阿拉伯联合酋长国 *通信:ktarabily@uaeu.ac.ae7阿拉伯联合大学科学院生物学系,阿拉伯联合酋长国15551,阿拉伯联合酋长国 *通信:ktarabily@uaeu.ac.ae
摘要:从自然环境中分离新的细菌菌株可以检测出具有潜在实际意义的微生物。可以使用经典的微生物学和分子生物学方法来表征此类微生物。目前,对新发现的微生物的研究基于测序技术。全基因组测序可以提供有关菌株来源、分类地位和表型特征的信息。这项研究是使用从玉米作物根际分离的细菌无色杆菌属 77Bb1 进行的。使用 Illumina 2 × 150 nt 技术对细菌基因组进行测序。使用生物信息学方法分析获得的序列,得到 57 个重叠群和包含 6,651,432 nt 的基因组。基于 16S rRNA 基因序列的系统发育分析使所分析的细菌能够归属为无色杆菌属。获得的基因组包含 4855 种具有功能分配的蛋白质基因。其中一些基因与外来生物的生物降解和代谢有关。在分析的基因组中发现了所有用于氨基苯甲酸降解的基因以及几乎所有用于苯甲酸和苯乙烯降解的基因,这表明分离的菌株具有用于天然生物修复方法的潜力。
作者格式,未经同行评审的文件发布于2023年7月7日。doi:https://doi.org/10.3897/arphapreprints.e109709
摘要:生物合作代谢是一种用于治疗难治性有机物的经济和有效的技术,近年来,它已被广泛用于治疗含氯苯酚的废水。已经发现,许多条件都会影响生物合作代谢效率,例如碳源类型,碳源含量,微生物类型和环境因素。碳源浓度实验表明,当乙酸钠与黑苯胺粉的剂量比为1:2时,黑苯胺粉末的降解速率为82%,去除率为92.9%。当四氯苯酚从210 mg/L增加到2100 mg/L时,四氯苯苯酚在流出物中增加,并且微生物的活性被抑制。此外,活性污泥的沉积性能也损坏了。温度测试表明,在35°C下去除的4-氯苯酚高达2100 mg/L,并且可以在20°C下检测到废水中的明显4-氯苯酚残基。因此,通过适当控制反应堆的外部工作条件,可以实现难治性有机物(例如氯苯酚)的合作代谢。
摘要:在单喷丝头静电纺丝均匀混合溶液的过程中,通过 PEO 和 BW 的自组织,制备了由聚环氧乙烷 (PEO)、蜂蜡 (BW) 和 5-硝基-8-羟基喹啉 (NQ) 制成的芯鞘纤维组成的纤维材料。此外,采用同样的方法,还可以制备由 PEO、聚(L-丙交酯) (PLA) 和 NQ 或 5-氯-7-碘-8-羟基喹啉 (CQ) 以及 PEO、聚(ε-己内酯) (PCL) 和 NQ 制成的芯双鞘纤维组成的纤维材料。分别用己烷和四氢呋喃对 BW 和聚酯进行连续选择性萃取,结果表明 PEO/聚酯/BW/药物的芯双鞘纤维由 PEO 芯、聚酯内鞘和 BW 外鞘组成。为了评估 PEO/BW/NQ、PEO/PLA/BW/NQ、PEO/PCL/BW/NQ 和 PEO/PLA/BW/CQ 纤维材料用于植物保护的可能性,使用植物病原微生物(皱褶假单胞菌、禾谷镰刀菌和燕麦镰刀菌)和有益微生物(绿针假单胞菌、解淀粉芽孢杆菌和棘孢木霉)进行了微生物学研究。发现纤维材料对植物病原微生物和有益微生物均具有抗菌和抗真菌活性。这是首次报道装载 8-羟基喹啉衍生物的纤维材料不仅对植物病原微生物具有活性,而且对农业中重要的有益微生物也具有活性。
摘要:塑料和微塑料污染由于其持久性和对人类健康的潜在不利影响,已经引起了大量的生态问题。通过生物过程降解塑料对生态健康具有重要意义,因此微生物降解塑料的可行性受到了广泛关注。本研究初步探讨了塑料的生物降解机理以及不同的细菌酶(如PET水解酶和PCL-角质酶)在降解不同聚合物(如PET和PCL)中的优势和作用。本文特别关注它们的作用方式和潜在的酶促机制,总结了有关塑料和微塑料生物降解的机制和影响因素的研究,以及它们在生物降解过程中增强合成塑料降解的酶。此外,塑料的生物降解也受到塑料添加剂和增塑剂的影响。塑料成分中的增塑剂和添加剂会产生有害影响。为了进一步提高聚合物的降解效率,本文还初步讨论了各种提高生物降解效率的预处理方法,这些方法可以显著减少有毒塑料污染。现有的研究和数据显示,大量微生物参与了塑料的生物降解,尽管它们的具体机制尚未得到彻底探究。因此,利用各种细菌菌株高效降解塑料以改善人类健康和安全具有巨大的潜力。
