分类,并为政策和工业实践提供信息。开发用于提取聚商生物降解性数据的自动化工具可以大大提高现有研究的效率,可访问性和适用性,从而加速科学的进步和实践实施。与物质领域专家合作进行的这项研究旨在促进知识整合以增强材料循环。为了支持准确的,特异性模型的开发,我们提出了PolyBD,这是一种在聚合物生物降解性上进行的进行进行的数据集。数据集由100篇研究文章组成,记录了微生物或酶和聚合物之间的相互作用。每篇文章都被手动分割成句子并在实体级别注释,捕获聚合物,细菌,真菌和酶(见图1)。为了改善域专家注释的效用,在多个层次级别注释实体。,例如,如图1所示,“粘膜杆菌”(物种)和“铬细菌”(属)均被注释。未来的注释效果将这些细菌实体与其相应的本体论条目联系起来。在关系注释过程中,聚合物“聚合物聚合物”将与属和物种水平的注释相结合,从而使对聚合物 - 细菌相互作用有全面的了解。polybd包含大量嵌套的象征 - 图1中包含的实体,例如“ Chro-mobacterium”和“ Rhizopus” - 在提取方面面临着相当大的挑战。能够解决嵌套命名实体识别(NER)的方法很少,尤其是在专用域中[5]。鉴于此任务的知识密集型性质 - 区分
摘要:眼后段疾病的治疗面临挑战,因为眼内结构复杂,可充当强大的静态和动态屏障,限制局部和眼内药物的渗透、停留时间和生物利用度。这妨碍了有效治疗,需要频繁给药,例如定期使用眼药水或到眼科医生处进行玻璃体内注射,以控制疾病。此外,药物必须是可生物降解的,以最大限度地减少毒性和不良反应,并且要足够小,不会影响视轴。可生物降解的纳米药物输送系统 (DDS) 的开发可以解决这些挑战。首先,它们可以在眼组织中停留更长时间,从而减少给药频率。其次,它们可以穿过眼部屏障,为无法接近的目标组织提供更高的生物利用度。第三,它们可以由可生物降解和纳米尺寸的聚合物制成。因此,可生物降解纳米级 DDS 的治疗创新已被广泛用于眼科药物输送应用。在这篇综述中,我们将简要概述用于治疗眼部疾病的 DDS。然后,我们将研究当前治疗后段疾病面临的挑战,并探索各种类型的可生物降解纳米载体如何增强我们的治疗手段。对 2017 年至 2023 年期间发表的临床前和临床研究进行了文献综述。通过可生物降解材料的进步,加上对眼部药理学的更好理解,基于纳米的 DDS 得到了迅速发展,显示出克服临床医生目前遇到的挑战的巨大希望。
可生物降解的纳米材料可以显着改善纳米医学的安全性。锗纳米颗粒(GE NP)是作为生物医学应用的有效光热转化器而开发的。ge NP由飞秒激光在液体中合成的液体通过氧化机制迅速溶解在生理样环境中。GE纳米颗粒的生物降解在体外和正常组织中保存在半衰期短达3.5天的小鼠中。GE NP的生物相容性通过血液学,生化和组织学分析在体内确定。在近红外光谱范围内GE的强烈光吸收可在静脉注射GE NP后对体内植入的肿瘤进行光热治疗。光热疗法导致EMT6/P腺癌肿瘤生长的3.9倍降低,而小鼠的存活显着延长。在纳米材料的静脉内和肿瘤内施用后,GE NP(808 nm处的7.9 L G - 1 cm-1)的出色质量渗透使骨骼和肿瘤具有光声成像。因此,强烈吸收近红外的生物降解纳米材料对晚期治疗学有希望。
1 State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China 2 Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305, USA 3 Plasticentropy, rue Thiers 28, Reims 51100, France 4 Department of Entomology and Department of Osteopathic Medical Specialties, Michigan州立大学,东兰辛,密西西比州48824,美国5环境研究学院科钦科学技术大学,高知,高知682022,印度6号,6682022,682022,北北部科学与技术大学化学工程系,波港科学与技术大学,韩国共和国7673,韩国环境科学与工程学院7中国9号生态与环境科学学院北京有限公司,东中国师范大学,上海,200241年,中国10,北京大学研究所,北京大学,北京100191,中国环境学院11,北京大学环境学院
摘要:眼后段疾病的治疗面临挑战,因为眼内结构复杂,可充当强大的静态和动态屏障,限制局部和眼内药物的渗透、停留时间和生物利用度。这妨碍了有效治疗,需要频繁给药,例如定期使用眼药水或到眼科医生处进行玻璃体内注射,以控制疾病。此外,药物必须是可生物降解的,以最大限度地减少毒性和不良反应,并且要足够小,不会影响视轴。可生物降解的纳米药物输送系统 (DDS) 的开发可以解决这些挑战。首先,它们可以在眼组织中停留更长时间,从而减少给药频率。其次,它们可以穿过眼部屏障,为无法接近的目标组织提供更高的生物利用度。第三,它们可以由可生物降解和纳米尺寸的聚合物制成。因此,可生物降解纳米级 DDS 的治疗创新已被广泛用于眼科药物输送应用。在这篇综述中,我们将简要概述用于治疗眼部疾病的 DDS。然后,我们将研究当前治疗后段疾病面临的挑战,并探索各种类型的可生物降解纳米载体如何增强我们的治疗手段。对 2017 年至 2023 年期间发表的临床前和临床研究进行了文献综述。通过可生物降解材料的进步,加上对眼部药理学的更好理解,基于纳米的 DDS 得到了迅速发展,显示出克服临床医生目前遇到的挑战的巨大希望。
摘要:作者使用基于碳基于乙基纤维素的可生物降解基质的碳基复合材料探索了基于纸的电子产品的开发,该复合材料基于乙基纤维素和二元酯溶剂。主要重点是用于创建灵活,环保电子设备的屏幕打印技术。这项研究通过考虑各种组合物,包括石墨烯,石墨和碳黑色的各种组成,评估了这些复合材料的流变学测量,电特性,柔韧性和粘附的可打印性。研究发现,某些组合物提供了低于1kΩ /sq的薄板电阻,并且对纸质基板的良好粘附仅具有一层丝网印刷,这表明了商业应用的潜力,例如单使用电子,柔性加热器等。< /div> < /div> < /div>该研究还显示了循环弯曲对准备层的电气参数的影响。这项研究强调了矩阵的生物降解性的重要性,这是有助于可持续电子领域的。总体而言,这项研究提供了开发环保,灵活的电子组件的见解,突出了可生物降解材料在这个不断发展的行业中的作用。
摘要。本研究论文探讨了快速发展的可持续设计领域以及在产品开发方法中对可生物降解材料的日益接受。本研究探讨了在环境问题日益严重和客户对可持续产品的需求日益增加的情况下,向环保设计转变的趋势。本研究涉及一系列可生物降解材料,研究了它们的相应特性,并研究了它们在各个行业的产品设计中的整合情况。本研究讨论了在购买、生产和推广可生物降解产品时遇到的一些挑战,同时确保了它们的实用性和外观吸引力。此外,本文还研究了与这些材料相关的环境后果,并与传统的不可生物降解替代品进行了比较。本研究结合了理论分析和案例研究,为将可分解材料应用于产品设计的有效技术提供了有用的见解。本研究重点关注在生态责任、实用性和对消费者的吸引力之间取得平衡。
在这项工作中,使用PLA/PHB混合物作为基质和两种类型的微晶纤维素作为三种不同含量的填充剂开发了可生物降解的生物复合材料。对生物复合材料的热和形态特征和分子动态行为进行了评估。可以看到,纤维素添加并未促进基质中TM,TC和TCC的重大变化。另一方面,XRD和TGA表明,最高含量(7 wt%)的纤维素填充剂的添加导致PLA/PHB基质的结晶度和热稳定性的降低,这表明填充骨料的形成。TD-NMR证实了这种指示,其结果表明,在包含较高纤维素含量的样品中的异质性分子更大。因此,该技术被证明是对复合材料表征的相关和互补的工具,有助于确定聚合物矩阵中最合适的填充含量。
传统包装在证明准确和实时食品到期日期的局限性导致食物浪费和食物传播疾病。通过智能包装进行实时食品质量监测可能是减少食物浪费和食物传播疾病的有效解决方案。本评论的重点是将最新的技术进步纳入食品包装中,以监测食品变质,重点是基于纸张的传感器及其与智能手机的结合。本评论论文对可生物降解包装中的先进的大分子技术进行了全面探索,对基于纸张的探针的一般概述及其将其掺入食品包装中,并融合到食物包装中,以及用于监测食物新鲜度的智能传感机制。鉴于围绕食物浪费的全球问题不断提高,我们的手稿是一种关键的资源,巩固了当前的研究发现,并突出了这些Inno vantic包装解决方案的变革潜力。我们还强调了当前的智能纸质食品新鲜传感器及其各种优势和局限性。提出了实施基于纸张的传感器/探针以进行食物储存及其准确性的示例。最后,我们研究了如何智能包装是减少食物浪费的替代方法。这里讨论的几种技术具有良好的潜力,可以用于食品包装进行实时食品监测,尤其是在与智能手机诊断结合使用时。
非病毒载体,例如无机纳米颗粒(NP),脂质体和阳离子聚合物NPS,9月9日可能会造成较低的免疫原性的替代性,并且能够以较低的速度,可容纳大尺度的大尺度上,并在大尺度上产生较低的DNA质粒,可能会产生10次,并可能在大尺度上产生,并且可能会在大尺度上产生,并且在大尺度上产生了大规模的质量,并且能够构成大规模的质量。有效的细胞穿透。因此,主要障碍是在体内组织和器官的三维(3D)复杂结构中的细胞吸收和穿透,12保留核酸分子的完整性。为了克服这些问题,已经探索了具有不同物理化学特征的不同纳米颗粒12-15,例如大小,形态和表面功能,但是有效的细胞吸收和3D系统中的细胞吸收和渗透仍然是一个关键挑战。16