哺乳动物胎生发育需要胎盘作为胎儿和母体子宫之间的中间界面而进化。除了保留胎儿和分泌营养物质以支持生长发育到足月之外,胎生物种还必须改变或抑制母体免疫系统识别半同种异体胎儿。囊胚从透明带孵化后,滋养层细胞分化为母体子宫内膜提供初始通讯,以调节黄体孕酮的产生以及子宫和妊娠建立和维持所必需的胚胎发育中的生物途径。许多胚胎因子已被提出用于建立和维持妊娠。CRISPR-Cas9 基因编辑技术提供了一种特定且有效的方法来生成动物模型以进行功能丧失研究,以研究特定胚胎因子的作用。 CRISPR-Cas9 基因编辑的使用为研究妊娠因子在猪妊娠发育和建立中的具体作用提供了一种直接的方法。这项技术有助于解决许多有关植入期发育的问题,并改变了我们对猪母体识别和维持妊娠的理解。生殖 (2021) 161 R79–R88
(NCF)[2]。NCF 代表一套标准化的信息,有助于优化 0 至 3 岁儿童的发展。该框架有五个相互关联、不可分割的组成部分,其实施对中低收入国家 (LMIC) 至关重要。它包括良好的健康、充足的营养、响应性的照料、早期学习机会以及安全保障。每个组成部分都由多种服务和干预措施组成 [3]。这些组成部分仅得到部分实施,许多因素威胁着儿童早期发展 (ECD),其中包括母乳喂养不当、营养不良、疾病、刺激有限、虐待和艾滋病毒感染 [4]。每年有超过 140 万儿童出生于 HIV 感染的母亲,其中 90% 以上生活在撒哈拉以南非洲 [5,6]。喀麦隆的全国患病率为 3.2%,占全球患病率的约 2.2% [5,6]。 B+方案的实施导致越来越多的育龄妇女接受抗逆转录病毒 (ARV) 药物治疗。据估计,全世界有 67% 的孕妇正在服用 ARV 药物 [7]。在喀麦隆,2019 年有 82.5% 的母亲终身接受 ARV 治疗,以保证她们的健康并预防母婴传播 HIV [8]。这导致未感染 HIV 的儿童数量不断增加。据报道,高等教育机构的发病率和死亡率更高 [9],生长发育较差 [10],
摘要:氮肥利用率低是限制植物生长发育的主要因素之一,农业上需要施用高剂量的氮肥才能实现高产。然而,大部分氮肥未被植物利用,污染了环境。这种情况可以通过提高植物的氮利用效率 (NUE) 来改善。NUE 是一种由遗传和环境因素之间的多种相互作用驱动的复杂性状,改善 NUE 需要从根本上了解植物氮代谢的关键步骤——吸收、同化和再动员。本综述总结了 20 年来利用生物工程改造氮代谢以增加作物生物量积累和产量的研究。结构和调控基因的表达最常使用过表达策略来改变,但也使用了 RNAi 和基因组编辑技术。木本植物受到特别关注,因为它们具有重要的经济意义,在生态系统中发挥着至关重要的作用,与草本植物有着根本的区别。本综述还探讨了转基因植物的意外影响问题,这些影响包括氮代谢改变,例如早期开花,这是目前很少受到关注的研究课题。文中讨论了使用各种方法在全球气候变化的背景下提高作物氮利用效率的未来前景,这对于可持续农业的发展至关重要。
棉蚜是世界范围内造成严重农作物损失的重要农业害虫之一,不加区别地使用化学药剂会导致棉蚜产生抗性,成为成功防治的一大障碍。本研究通过对取食表达 ds AgCYP6CY3 的转基因棉花品系(转基因棉)的棉蚜进行转录组测序分析,筛选出上调表达基因 AgJHAMT ,并将其富集到保幼激素途径中。在取食转基因棉的棉蚜中过表达 AgJHAMT 基因,并明确了该基因在若虫期的表达谱。然后,与对照组相比,沉默 AgJHAMT 可使棉蚜的发育历期提前 0.5 d。 dsJHAMT 处理组棉蚜的 T 和 t 值(6.88 ± 0.15、1.65 ± 0.06)显著短于喷洒 H 2 O 对照组(7.6 ± 0.14、1.97 ± 0.09)(P < 0.05)。施用 JH 类似物甲氧普烯可以挽救因 AgJHAMT 沉默而导致的棉蚜快速生长。这些结果阐明了 AgJHAMT 在棉蚜发育时期所起的作用。本研究有助于进一步阐明表达 ds AgCYP6CY3 的转基因棉花品系延缓棉蚜生长发育的分子机制。
山药 ( Dioscorea spp.) 是一种多品种、多用途块茎作物。为了阐明块茎发育机制,我们对山药块茎进行了时程表型、细胞学、生理、代谢组学和转录组学分析。结果表明,随着淀粉的积累,块茎重量增加,且在块茎发育过程中蔗糖代谢也很活跃,同时脱落酸 (ABA) 水平与块茎重量呈正相关,赤霉素 (GA) 则呈负相关。代谢组学分析表明,在块茎发育过程中积累了400种代谢物,这些代谢物在调控块茎生长发育、风味和药用成分方面发挥着重要作用。通过比较转录组分析,共将743个差异表达基因 (DEG) 分配到淀粉和蔗糖代谢、植物激素信号转导途径和类黄酮途径等21个KEGG通路。综合转录组和代谢组分析揭示了植物激素信号转导途径、淀粉和蔗糖代谢途径、黄酮类化合物合成途径的DEG和差异积累代谢物(DAM)。综上所述,参与植物激素信号转导途径、淀粉和蔗糖代谢途径、黄酮类化合物代谢途径的DAM和DEG在块茎发育调控中起着重要作用。本研究为山药分子育种和品质改良提供了理论依据和实践指导。
Ceratocystis manginecans 可导致芒果枯萎病,造成重大的经济损失。在感染过程中,角铂素 (CP) 家族蛋白 (CPPs) 被认为参与致病机制,但在 C. manginecans 中尚未确定。为了证实此功能,本研究对 C. manginecans 的 CP 蛋白 (CmCP) 进行了表征。通过用崩溃酶和裂解酶处理 C. manginecans 菌丝体来制备其原生质体。在含有 60% PEG 和 50 µ g/mL 潮霉素 B 的培养基中使用 CRISPR/Cas-U6-1 表达载体编辑 cmcp 基因,得到 cmcp 缺失的突变体 (1 cmcp)。通过将 cmcp 转化为 1 cmcp 获得补充突变体 (1 cmcp -C)。通过与野生型菌株进行比较,对 1 cmcp 和 1 cmcp -C 的形态、菌丝生长、分生孢子产生和致病性进行了表征。此外,cmcp 在毕赤酵母中转化和表达,获得的重组蛋白 CmCP 导致烟草叶片严重坏死。经 CmCP 处理的植物叶片表现出过敏反应症状,包括电解质渗漏、活性氧产生以及防御相关基因 PR-1 、 PAD3 、 ERF1 、 HSR203J 和 HIN1 的过度表达。所有这些结果都表明 cmcp 基因是 C. manginecans 生长发育所必需的,并且是芒果感染的主要致病因子。
天然生长素吲哚-3-乙酸 (IAA) 是植物生长发育诸多方面的关键调节剂。合成生长素除草剂(如 2,4-D)可通过诱导植物产生强烈的生长素信号反应来模拟 IAA 的作用。为了确定印度篱芥(Sisymbrium orientale)杂草种群对 2,4-D 的抗性机制,我们对 2,4-D 抗性 (R) 和易感 (S) 基因型进行了转录组分析,结果显示在生长素辅助受体 Aux/IAA2 (SoIAA2) 的降解子尾 (DT) 中存在 27 个核苷酸的框内缺失,从而删除了 9 个氨基酸。在重组自交系中,缺失等位基因与 2,4-D 抗性共分离。此外,在该物种的几个 2,4-D 抗性田间种群中也检测到了这种缺失。表达 SoIAA2 突变等位基因的拟南芥转基因株系对 2,4-D 和二甲苯具有抗性。IAA2-DT 缺失降低了天然和合成生长素与 TIR1 的体外结合,导致结合率降低和解离率增加。这种合成生长素除草剂抗性机制赋予了这种 Aux/IAA 辅助受体的 DT 区域在植物体内的功能,以发挥其在合成生长素结合动力学中的作用,并揭示了一种使用基因编辑生产合成生长素抗性作物的潜在生物技术方法。
母体营养不良会对后代的生存和健康产生短期和长期影响。作为母体和胎儿之间的中介,胎盘具有解读环境信号(如营养物质的可用性)并进行适应以支持胎儿生长发育的潜力。虽然存在这种潜力,但很明显,有时胎盘适应性未能发生,导致妊娠结局不佳。本综述将重点介绍胎盘对母体营养不良的反应,这些反应与胎盘血管化和血流动力学以及胎盘营养运输系统的变化有关,这些变化与物种有关。虽然许多现有文献描述了导致胎儿结局不佳的胎盘反应,但已经开发出新的模型,利用母体营养受限时胎儿体重的固有变化来确定导致正常体重后代的胎盘适应性。对母体营养不良的胎盘反应范围的详细分析表明,胎盘组织结构和血管发育、氨基酸和脂质运输机制以及免疫相关因素的调节发生了变化。膳食补充精氨酸等特定营养素有可能通过多种机制改善胎盘生长和功能,包括刺激细胞增殖、蛋白质合成、血管生成、血管舒张和基因调控。有必要更好地了解胎盘对环境线索的反应,以制定诊断和干预策略来改善妊娠结果。生殖 (2021) 162 R73–R83
通用应激蛋白(USP)主要参与细胞对生物和非生物胁迫的应答,在植物的生长发育以及对逆境的应激反应中起着重要作用。在拟南芥、玉米和水稻中分别鉴定出23、26和26个USP基因。根据USP基因的理化性质,USP Ⅰ类蛋白质被鉴定为具有高稳定性的亲水性蛋白质。基于系统发育分析,USP基因家族分为6组,USP Ⅲ和USP Ⅴ表现出更多的多样性。此外,同一亚组的成员具有相近的内含子/外显子数量和共同的保守结构域,表明进化关系较近。基序分析结果显示USP基因间具有较高的保守性。染色体分布表明USP基因可能通过片段重复在拟南芥、玉米和水稻中发生了基因扩增。大部分的Ka/Ks值小于1,说明USP基因在拟南芥、玉米和水稻中经历了纯化选择。表达谱分析表明USP基因在水稻中主要响应干旱胁迫,在玉米中主要响应温度和干旱胁迫,在拟南芥中主要响应低温胁迫。基因共线性分析可以揭示基因间的相关性,有助于后续的深入研究。本研究为理解USP基因在单子叶植物和双子叶植物中的进化提供了新的思路,为更好地理解USP基因家族的生物学功能奠定了基础,可用于葫芦科育种相关项目。
近年来,植物基因组学取得了重大进展,研究人员能够识别负责植物生长、发育和逆境反应的基因和基因组区域。2019 年植物基因组学特刊汇集了 57 篇论文,深入探讨了植物基因组学的各个方面,包括基因发现、数量性状位点(QTL)鉴定、基因组预测、基因组编辑、植物叶绿体基因组测序和比较分析、microRNA 分析和比较基因组学。这些研究广泛采用结合生物信息学和转录组分析的综合研究方法来识别响应各种生物和非生物逆境的基因 [ 1 , 2 ]。该方法包括(1)从参考基因组及其注释中全基因组识别所研究的基因家族,对已识别基因进行生物信息学分析,如染色体分布、基因结构、相似性和重复、保守结构域和基序分析以及系统发育分析; (2) 使用来自 Illumina RNA-Seq 测序和/或实时 PCR 分析的转录组数据,对不同胁迫处理下不同发育阶段的不同组织进行表达谱分析,并研究响应研究性状的基因沉默。使用这种方法,在 22 篇论文中,研究了已报道的各种基因家族,以识别响应非生物胁迫、果实成熟、种子发育、种子产量和花粉发育的基因,涉及 12 多个物种,例如番茄、小麦、桉树、烟草、葡萄、拟南芥、番茄、木薯、芜菁、陆地棉、谷子和西瓜。这些基因家族包括2-氧代戊二酸依赖性双加氧酶(2OGD)、细胞分裂素氧化酶/脱氢酶(CKX)、钙依赖性蛋白激酶(CPK)、核转运蛋白β、VQ、水通道蛋白、赤霉酸刺激的拟南芥(GASA)、YABBY转录因子、B3结构域转录因子、多聚半乳糖醛酸酶(PG)和果胶甲酯酶(PME)、MADS-box转录因子、WRKY转录因子、teosinte-branched 1/cycloidea/增殖(TCP)转录因子、III类过氧化物酶(POD)、糖苷水解酶家族1β-葡萄糖苷酶、RNA编辑因子、蛋白磷酸酶(PP2C)、LIM、油菜素类固醇信号激酶(BSK)和查尔酮合酶(CHS)。微小RNA(miRNA)是一类小RNA分子,在基因表达中发挥着重要的调控作用。两篇论文探讨了miRNA在不同植物物种中的作用。第一篇论文开发了一种人工miRNA前体系统,可以在拟南芥和水稻中高效克隆和沉默基因。该系统可以成为这些作物功能基因组学研究的宝贵工具[3]。第二篇论文鉴定并描述了亚麻籽(一种重要的油料作物)正在发育的种子中的miRNA[4]。结果表明,miRNA 在种子发育过程中发挥着重要作用,可以作为作物改良的靶标。总体而言,这些研究有助于我们了解 miRNA 在植物生长发育中的调控作用,并有望应用于作物改良。GWAS 已广泛用于识别与植物重要性状相关的 QTL 或数量性状核苷酸 (QTN)。本期的一篇精彩论文是关于与西瓜驯化相关的瓜氨酸变异的 GWAS 匹配单倍型网络 [ 5 ]。该论文确定了控制瓜氨酸合成的基因组区域,瓜氨酸是一种非蛋白氨基酸,在植物的生长发育中起着至关重要的作用。