l -1MTrp,定量和纵向可视化全身 IDO1 动态。具体来说,我们首先评估了具有不同 IDO1 表达模式的对侧人类肿瘤的小鼠中的 11 C- l -1MTrp。然后,我们应用 11 C- l -1MTrp 纵向监测用 1-甲基- l -色氨酸加化疗药物或针对程序性细胞死亡 1 和细胞毒性 T 淋巴细胞相关蛋白 4 的抗体治疗的免疫功能正常的黑色素瘤小鼠的全身 IDO1 变化。结果 11 C- l -1MTrp 正电子发射断层扫描 (PET) 成像准确描绘了异种移植小鼠模型中的 IDO1 表达。此外,我们能够可视化肠系膜淋巴结 (MLN) 中的动态 IDO1 调节,这是肿瘤外 IDO1 靶点,其中 11 C- l -1MTrp 的摄取百分比准确地注释了临床前模型中多种联合免疫疗法的治疗效果。值得注意的是,MLN 中的 11 C- l -1MTrp 信号强度与治疗肿瘤的特定生长率呈负相关,这表明 MLN 中的 IDO1 表达可以作为癌症免疫设定点的新生物标志物。结论 IDO1 与 11 C- l -1MTrp 的 PET 成像是一种评估多种组合免疫疗法治疗效果的可靠方法,可提高我们对 IDO1 方案的优点和挑战的理解。正在进一步验证该动物数据在人类中的应用。我们设想,我们的研究结果将为在组合癌症免疫治疗中无创地可视化每个患者的个体反应,并制定最佳的个性化组合策略提供一个潜在的精准医疗范例。
为了增加知识,必须深入研究大型动物模型中的基因编辑,以便将来将其应用于转化医学和食品生产。线粒体转录因子 A(TFAM)是 HMGB 亚家族的成员,可与 mtDNA 启动子结合。该基因维持 mtDNA,并且对于 mtDNA 转录的起始至关重要。最近,我们通过 CRISPR/Cas 9 技术破坏牛成纤维细胞中的 TFAM 基因,生成了一种新的细胞系。我们通过生成杂合突变克隆证明了 CRISPR/Cas9 设计是有效的。在这种情况下,一旦该基因调节 mtDNA 复制特异性,该研究旨在确定后编辑细胞是否能够在体外维持,并评估它们在培养中连续传代后是否会出现 mtDNA 拷贝数和线粒体膜电位的变化。编辑后的细胞在培养中扩增,我们进行了生长曲线、倍增时间、细胞活力、线粒体 DNA 拷贝数和线粒体膜电位测定。编辑过程并没有使细胞培养变得不可行,尽管与对照组相比,细胞生长率和活力有所下降,因为我们观察到在补充有尿苷和丙酮酸的培养基中培养时,细胞生长良好。它们还表现出典型的成纤维细胞样外观。用于确定 mtDNA 拷贝数的 RT-qPCR 表明,与不同细胞代次中未编辑的克隆(对照)相比,编辑后的克隆有所减少。用 Mitotracker Green 和 red 进行细胞染色表明,与未编辑的细胞相比,编辑后的细胞中的红色荧光有所减少。因此,通过表征,我们证明了 TFAM 基因对于线粒体的维持至关重要,因为它会干扰不同细胞传代中线粒体 DNA 拷贝数和膜电位的稳定性,从而证实了杂合编辑的细胞中线粒体活性的降低。
为了增加知识,必须深入研究大型动物模型中的基因编辑,以便将来将其应用于转化医学和食品生产。线粒体转录因子 A(TFAM)是 HMGB 亚家族的成员,可与 mtDNA 启动子结合。该基因维持 mtDNA,并且对于 mtDNA 转录的起始至关重要。最近,我们通过 CRISPR/Cas 9 技术破坏牛成纤维细胞中的 TFAM 基因,生成了一种新的细胞系。我们通过生成杂合突变克隆证明了 CRISPR/Cas9 设计是有效的。在这种情况下,一旦该基因调节 mtDNA 复制特异性,该研究旨在确定后编辑细胞是否能够在体外维持,并评估它们在培养中连续传代后是否会出现 mtDNA 拷贝数和线粒体膜电位的变化。编辑后的细胞在培养中扩增,我们进行了生长曲线、倍增时间、细胞活力、线粒体 DNA 拷贝数和线粒体膜电位测定。编辑过程并没有使细胞培养变得不可行,尽管与对照组相比,细胞生长率和活力有所下降,因为我们观察到在补充有尿苷和丙酮酸的培养基中培养时,细胞生长良好。它们还表现出典型的成纤维细胞样外观。用于确定 mtDNA 拷贝数的 RT-qPCR 表明,与不同细胞代次中未编辑的克隆(对照)相比,编辑后的克隆有所减少。用 Mitotracker Green 和 red 进行细胞染色表明,与未编辑的细胞相比,编辑后的细胞中的红色荧光有所减少。因此,通过表征,我们证明了 TFAM 基因对于线粒体的维持至关重要,因为它会干扰不同细胞传代中线粒体 DNA 拷贝数和膜电位的稳定性,从而证实了杂合编辑的细胞中线粒体活性的降低。
性别控制技术在家畜生产中具有重要意义,尤其对于快速繁殖的水牛(bubalus bubalis)具有重要意义,本研究以水牛为研究模型。我们已证实整合到小鼠Y染色体上的荧光蛋白可用于小鼠植入前胚胎的性别鉴定。首先,我们优化了增强型绿色荧光蛋白(eGFP)和mCherry外源基因在Neuro-2a细胞、小鼠胚胎干细胞、小鼠胚胎细胞(NIH3T3)、水牛胎儿成纤维细胞(BFF)中的靶向整合效率。结果表明,靶标两侧同源臂长度为800 bp比300 bp或300 bp/800 bp更有效。当细胞补充了 pifithrin-µ(一种抑制 p53 与线粒体结合的小分子)时,BFF 细胞中同源定向修复 (HDR) 介导的敲入也得到了显著改善。250 V 的三个脉冲在 BFF 细胞中产生最有效的电穿孔,并且发现 1.5 µ g/mL 嘌呤霉素是筛选的最佳浓度。此外,利用 CRISPR/Cas9 介导的基因编辑结合体细胞核移植 (SCNT) 技术成功生成了 Y-Chr-eGFP 转基因 BFF 细胞和克隆水牛胚胎。在第 6-8 代时,Y-Chr-eGFP 转基因 BFF 细胞的生长率和细胞增殖率明显低于非转基因 BFF 细胞;甲基化相关基因 DNMT1 和 DNMT3a 的表达水平相似;然而,与非转基因细胞相比,Y-Chr-eGFP 转基因 BFF 细胞中乙酰化相关基因 HDAC1 、 HDAC2 和 HDAC3 的表达水平显著较高(p < 0.05)。Y-Chr-eGFP 转基因 BFF 被用作 SCNT 的供体,结果表明 eGFP 报告基因适用于胚胎性别的可视化。克隆水牛胚胎的囊胚率相似;然而,与对照相比,转基因克隆胚胎的卵裂率明显较低。总之,我们优化了产生转基因 BFF 细胞的方案,并使用这些细胞作为供体成功产生了 Y-Chr-eGFP 转基因胚胎。
摘要 本研究旨在分析两种浮萍:青萍和浮萍在不同温度(15–25 °C)和光周期(12–24 小时)组合下生长发育的情况,同时控制电导率、pH 值和氧含量等物理化学参数。将植物置于合成氮培养基中,并监测其生长 40 天。使用方差分析 (ANOVA) 和主成分分析 (PCA) 等统计学方法进行数据分析。结果表明,这两种浮萍在较高温度(25 °C)和较长光周期(24 小时)下生长得更好。在最佳条件(25 °C 和 12 小时光周期)下,青萍的表面积覆盖率高达 58.4%,生物量超过 1.44 克鲜重,表明其能高效利用有利条件。而 Lemna trisulca 在极端条件下(15 °C 和 12 小时光照周期)表现出更稳定的生物量(1.03 克鲜重)增长和 45.8% 的覆盖率。关于对变化的物理化学条件的适应性,Lemna minor 对有利参数的响应更好,在最佳 pH 6.05 和电导率 31.6 µS/cm 下实现更高的生长率,而 Lemna trisulca 即使在变化更大的条件下也表现出稳定的生长,在较高电导率(583 µS/cm)和较低 pH(6.96)下生长下降最小。研究结果表明,Lemna minor 在最佳条件下更具竞争力,这可能是由于其更有效地利用了可用资源。其快速生长使其在生物修复中特别有价值,而 Lemna trisulca 可能更好地应对变化的水生条件。结论强调了这两个物种之间的适应性差异,这对于管理水生生态系统具有重要意义。浮萍适合于稳定的环境,而浮萍则适用于变化多端的条件,这表明它们在环境保护和生物修复方面具有多种潜在用途。这些研究为浮萍的适应能力提供了重要数据,这对于有效管理水生生态系统至关重要。
图 2:芯片上嵌入 hMO 的明场图像 (A)。沿施加的流动方向排列的神经胶质和神经元突起:TH(红色)、GFAP(绿色)、MAP2(洋红色)(B)。芯片上中脑微组织的生长曲线。通过混合效应分析和 Tukey 检验确定的统计学意义 *p<0.033、**p<0.002、***p<0.001(n=8-10,来自 3 个独立的类器官代)(C)。静态(上图)和动态(下图)培养的 hMO 的明场图像描绘了神经突生长的差异(左图)(D)。静态和动态培养的 hMO 的最大神经突生长率的箱线图。通过 Mann-Whitney 检验确定的统计学意义 *p<0.033、**p<0.002、***p<0.001。 (n >= 3,来自 3 个独立的类器官代)(F)。显微照片和 hMO 免疫组织化学染色切片的相应定量分析显示分化 35 天后凋亡标志物 caspase 3 存在显著差异。通过 Welch t 检验确定统计学意义 *p<0.033、**p<0.002、***p<0.001。柱状图和误差线表示平均值 ± SEM(n >= 3,来自 3 个独立的类器官代)(E、G)。分化 60 天后的完整中脑类器官:TH(红色)、GFAP(绿色)、MAP2(洋红色)、细胞核(蓝色)(H)。放大 60 倍的完整 hMO 核心的放大细节(H)(I)。MAP2 阳性神经元的免疫荧光染色(J)。 GFAP 阳性星形胶质细胞的免疫荧光染色 (K)。TH 阳性多巴胺能神经元的免疫荧光染色 (L)。中脑类器官中神经黑色素聚集体的明场图像 (右图) 和相应的 Fontana Masson 染色显示细胞内和细胞外神经黑色素聚集 (左图) (M)。
背景:尽管最近在胰腺导管腺癌 (PDAC) 生物学特征描述方面取得了重大进展,但仍需付出更多努力来提高我们的认识,并应对与该疾病的侵袭性、高死亡率和化疗耐药性相关的挑战。方法:在本研究中,我们对 77 例 PDAC 患者来源的肿瘤异种移植 (PDTX) 进行了代谢组学分析,以研究代谢谱与 PDAC 患者的总生存期 (OS)、肿瘤表型和对五种抗癌药物 (吉西他滨、奥沙利铂、多西他赛、SN-38 和 5-氟尿嘧啶) 的耐药性之间的关系。结果:我们确定了一种能够预测 PDAC 患者临床结果的代谢特征 (p < 0.001,HR=2.68 [95% CI:1.5 4.9])。相关性分析表明,该代谢组学特征与 PDAC 分子梯度 (PAMG) 显著相关 (R = 0.44 和 p < 0.001),表明与肿瘤的转录组表型显著相关。使用 35 个 PDTX 衍生的原代细胞根据生长率抑制指标建立的耐药性评分可以识别出几种与耐药性相关的代谢物,耐药性同时伴随着几种二酰基磷脂的全球积累和溶血磷脂的减少。有趣的是,针对甘油磷脂合成提高了对三种测试的细胞毒药物的敏感性,这表明干扰代谢可能是克服 PDAC 挑战性耐药性的一种有前途的治疗策略。解读:总之,这项研究表明胰腺 PDTX 模型的代谢组学谱与临床结果、转录组表型和耐药性密切相关。我们还表明,针对脂质组学谱可用于治疗 PDAC 化疗耐药的联合疗法。© 2021 作者。由 Elsevier BV 出版 这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
水产养殖代表了全球一个关键的经济部门,满足了不断扩大的全球人口的粮食需求不断提高。因此,这项研究旨在评估亚洲鲈鱼(Lates Calcarifer)的脂肪肝发病率,并接受富含乳酸细菌的饮食,并评估其针对链球菌感染的生存率。本研究检查了240个海鲈(平均体重109±10.5 g),它们被随机分为四种,三个重复(每次处理25个样本)60天。包括以下处理的治疗方法:第一种治疗:鱼被商业饲料喂食。第二次治疗:将鱼提供含有109 cfu/g乳酸乳杆菌植物细菌的饲料。第三种治疗方法:将含有109 cfu/g乳酸乳杆菌细菌的饲料喂食。第四种治疗方法:为鱼提供了109 cfu/g五肠细菌的饲料,并以相等比例的比例结合plantarum乳杆菌。在实验结束时,评估了针对致病细菌的生长性能,生长率和脂肪肝脏的量。这些发现在最初30天内披露了第二次处理(应变140)中增长的增长指标。此外,在随后的30天期间的第三次处理(2p)(2p)中,在第三次治疗(2p)中注意到了统计学上的显着差异(p <0.05)。肝脏病理学检查表明,大多数治疗导致脂肪肝的发展。因此,建议将这些益生菌作为亚洲鲈鱼的饮食补充剂。然而,当内源性益生菌纳入饮食中时,第三种治疗方法(五肠杆菌)表现出最低的脂肪肝发病率。促进后与S. iniae,益生菌治疗的死亡率L. pentosus(P2)和Plantarum L. plantarum(140)显着超过对照组的死亡率(P <0.05)。发现在第60天,两种实验性益生菌之间没有协同相互作用的发现,与各个组相比,组合组显示出生长绩效的下降。已证明使用植物乳杆菌和五肠细菌,尤其是后者,可显着改善几种生长指标以及食物转化率。
微生物群与哺乳动物生理密切相关,对健康、生产力和生殖功能有重大影响。正常微生物群通过以下关键机制与宿主相互作用:充当抵御病原体的保护屏障、维持粘膜屏障完整性、协助营养代谢和调节免疫反应。因此,支持宿主的生长发育,并提供针对病原体和有毒物质的保护。微生物群显著影响大脑发育和行为,这已由受控实验室实验和人体临床研究的综合结果证明。这些前景表明,肠道微生物群通过肠脑轴影响神经发育过程、调节应激反应并影响认知功能。农场动物胃肠道中的微生物群将摄入的饲料分解并发酵成营养物质,用于生产肉和牛奶。在肠道微生物群的有益副产物中,短链脂肪酸 (SCFA) 因其在哺乳动物疾病预防和各种生产方面促进中的重要作用而特别值得注意。微生物群在哺乳动物的生殖激素系统中起着关键作用,可提高两性的生殖能力并促进母婴联系,从而成为维持哺乳动物生存的关键因素。微生物群是影响哺乳动物生殖成功率和生产特征的关键因素。均衡的微生物群可改善营养吸收和代谢效率,从而提高生长率、增加产奶量并增强整体健康状况。此外,它还能调节雌激素和孕酮等关键生殖激素,这些激素对于成功受孕和怀孕至关重要。了解肠道微生物群的作用可为优化育种和改善生产结果提供宝贵见解,促进农业和兽医学的发展。本研究强调了哺乳动物微生物群的关键生态作用,强调了它们对健康、生产力和生殖成功的必要贡献。通过整合人类和兽医的观点,它展示了微生物群落如何增强跨物种的免疫功能、代谢过程和激素调节,提供了有益于临床和农业进步的见解。
摘要背景:卵巢癌最初对一线化疗有反应。不幸的是,它经常复发并对现有疗法产生耐药性,晚期和复发性卵巢癌的存活率低得令人无法接受。因此,我们假设通过将顺铂化疗与 SW IV-134(一种针对癌症的肽模拟物和细胞死亡诱导剂)相结合,有可能实现更持久的治疗反应。SW IV-134 是一种最近开发的小分子缀合物,将 sigma-2 配体与内在死亡途径激活剂 SMAC(第二线粒体胱天蛋白酶激活剂)的肽类似物(模拟物)连接起来。sigma-2 受体在卵巢癌中过度表达,缀合物的 sigma-2 配体部分促进癌症选择性。缀合物的效应部分有望与顺铂化疗产生协同作用,癌症选择性有望降低假定的脱靶毒性。方法:卵巢癌细胞系分别用顺铂、SW IV-134 和顺铂联合治疗。使用发光细胞活力测定法确定治疗效果。测量 Caspase-3/7、-8 和 -9 活性作为死亡途径激活的补充指标。研究了人类卵巢癌的同基因小鼠模型和患者来源的异种移植 (PDX) 模型对 SW IV-134 和顺铂单药治疗以及联合治疗的反应。以肿瘤生长率和存活率为主要指标来衡量治疗效果。在尸检时评估潜在的药物相关毒性。结果:与体外单一药物相比,联合治疗在多种细胞系中始终优于单一药物。使用发光和基于流式细胞术的检测系统确认了肿瘤细胞死亡的预期机制,例如 caspase 激活。联合治疗在卵巢癌的同基因和基于 PDX 的小鼠模型中均被证明具有优越性。最值得注意的是,在患者来源的卵巢癌异种移植模型中,联合治疗使所有研究动物的已建立肿瘤完全消退。结论:SW IV-134 与顺铂化疗联合使用是一种有前途的治疗选择,值得进一步进行临床前开发和评估,作为晚期卵巢癌女性的治疗方法。关键词:Sigma-2 受体、Sigma-2/SMAC 药物偶联物、顺铂、联合治疗、卵巢癌