摘要背景:卵巢癌最初对一线化疗有反应。不幸的是,它经常复发并对现有疗法产生耐药性,晚期和复发性卵巢癌的存活率低得令人无法接受。因此,我们假设通过将顺铂化疗与 SW IV-134(一种针对癌症的肽模拟物和细胞死亡诱导剂)相结合,有可能实现更持久的治疗反应。SW IV-134 是一种最近开发的小分子缀合物,将 sigma-2 配体与内在死亡途径激活剂 SMAC(第二线粒体胱天蛋白酶激活剂)的肽类似物(模拟物)连接起来。sigma-2 受体在卵巢癌中过度表达,缀合物的 sigma-2 配体部分促进癌症选择性。缀合物的效应部分有望与顺铂化疗产生协同作用,癌症选择性有望降低假定的脱靶毒性。方法:卵巢癌细胞系分别用顺铂、SW IV-134 和顺铂联合治疗。使用发光细胞活力测定法确定治疗效果。测量 Caspase-3/7、-8 和 -9 活性作为死亡途径激活的补充指标。研究了人类卵巢癌的同基因小鼠模型和患者来源的异种移植 (PDX) 模型对 SW IV-134 和顺铂单药治疗以及联合治疗的反应。以肿瘤生长率和存活率为主要指标来衡量治疗效果。在尸检时评估潜在的药物相关毒性。结果:与体外单一药物相比,联合治疗在多种细胞系中始终优于单一药物。使用发光和基于流式细胞术的检测系统确认了肿瘤细胞死亡的预期机制,例如 caspase 激活。联合治疗在卵巢癌的同基因和基于 PDX 的小鼠模型中均被证明具有优越性。最值得注意的是,在患者来源的卵巢癌异种移植模型中,联合治疗使所有研究动物的已建立肿瘤完全消退。结论:SW IV-134 与顺铂化疗联合使用是一种有前途的治疗选择,值得进一步进行临床前开发和评估,作为晚期卵巢癌女性的治疗方法。关键词:Sigma-2 受体、Sigma-2/SMAC 药物偶联物、顺铂、联合治疗、卵巢癌
电子邮件:stephane.calvez@laas.fr 简介 原子层沉积 (ALD) 纳米厚的 Al 2 O 3 层或其他电介质层已被证实是一种有效的方法,可用于创建敏感材料封装层,防止其因周围大气中的水分和氧气含量而发生降解 [1,2]。另外,由氧气(分别是水)引起的半导体材料向绝缘体的腐蚀转变,称为干(湿)氧化,通常用于微电子和光子器件以及集成电路的制造,作为引入实现晶圆上光学路由 [3–6] 和/或电连接所需的电和/或光子限制的一种方式。特别是在硅光子器件制造中,后者的工艺通常涉及将硅层在高温或等离子体中暴露于水/氧气中,并通过厚度大于 100 nm 的 SiN x 掩模实现局部氧化保护 [3,4]。在此背景下,我们在此报告了使用 ALD 沉积的 Al 2 O 3 作为节省材料的氧化屏障以防止硅晶片的等离子诱导或高温热氧化的能力的研究。样品制备通过热 ALD 在硅晶片上沉积具有纳米厚度的 Al 2 O 3 薄膜。低压热 ALD 沉积由重复循环组成,每个循环包括 300 ms 的三甲胺铝 (TMA) 脉冲,然后在 N 2 下进行 2800 ms 的吹扫,150 ms 的水蒸气脉冲,以及在 N 2 下进行 6700 ms 的第二次吹扫。这里测试了两个沉积温度,90°C 和 150°C。使用可变角度光谱椭圆偏振法(使用 Accurion EP4 系统)测量所得层厚度。图 1 显示了 Al 2 O 3 厚度随沉积循环次数变化的记录。在 0 个循环时,测量到的厚度对应于天然氧化硅(测量到约 2 纳米)。在 15 个沉积循环之前,成核开始以异质生长(见图 1 插图)。超过 15 个循环后,沉积厚度以每循环生长率 (GPC) 0.19 纳米/循环线性增加,并且与沉积温度的依赖性较弱。随后使用紫外光刻和湿法蚀刻对 Al 2 O 3 涂层样品进行图案化,以获得具有 Al 2 O 3 保护和未保护硅区域的样品。使用稀磷酸(去离子水/H 3 PO 4 (37%) 1/1 溶液)在精确的 67°C 温度下进行层蚀刻,蚀刻速率为 30 纳米/分钟。分别用水和丙酮进行冲洗和清洁。测试了两种类型的氧化:干热氧化和等离子氧化。干热氧化方案包括在 5L/min 的 O 2 流量下从 30°C 开始线性升温(8.2°C/min),然后在 9L/min 的 O 2 流量下以 1000°C 进行恒温步骤,然后在 5L/min 的 O 2 流量下以 -16.3°C/min 的温度衰减。低压 O 2 等离子体氧化在 Sentech Si-500 设备中进行,使用 30 分钟的重复处理,其中样品受到 O 2 等离子体处理,RF 功率为 800W,基板温度保持在 100°C 以下。在这两种情况下,通过成像光谱椭圆偏振法测量处理过的样品的保护区和未保护区的氧化厚度。图 2 左侧显示,如果 Al 2 O 3 厚度大于 ~9 nm(45 个循环),则干氧化不会进行,而对于更薄的覆盖层,干氧化会减少。SEM 横截面(如图 2 中的插图所示)进一步证实了这一观察结果。类似地,观察到等离子体氧化导致氧化物生长遵循平方根定律的时间依赖性(Deal 和 Grove 模型 [7]),但对于(30 次循环)Al 2 O 3 涂层样品部分,其氧化速率降低。
Rahul Raj、Umesha C 和 Pranav Kumar DOI:https://doi.org/10.33545/26174693.2024.v8.i7Si.1606 摘要 田间试验于 2023 年喀里夫季节在农学系作物研究农场进行。实验采用随机区组设计,共十个处理,重复三次。处理细节如下:T 1:磷 40 千克/公顷 + 纳米尿素 1 毫升/升,T 2:磷 60 千克/公顷 + 纳米尿素 1 毫升/升,T 3:磷 80 千克/公顷 + 纳米尿素 1 毫升/升,T 4:磷 40 千克/公顷 + 纳米尿素 3 毫升/升,T 5:磷 60 千克/公顷 + 纳米尿素 3 毫升/升,T 6:磷 80 千克/公顷 + 纳米尿素 3 毫升/升,T 7:磷 40 千克/公顷 + 纳米尿素 4 毫升/升,T 8:磷 60 千克/公顷 + 纳米尿素 4 毫升/升,T 9:磷 80 千克/公顷 + 纳米尿素 4 毫升/升和对照地块。试验结果表明,施用 60 kg/ha 磷肥和 4 ml/l 纳米尿素(处理 8)可显著提高植株高度(202.00 cm)、最大植株干重(310.00 g/plant)、最大作物生长率(27.00 g/m 2 /day)、每穗最大行数(12.93)、行粒数(22.67)、种子指数(22.70 g)、籽粒产量(5.54 t/ha)、秸秆产量(9.92 t/ha)、收获指数(35.86%)。关键词:玉米,磷,纳米尿素,生长和产量。介绍玉米(Zea mays L.)是继水稻和小麦之后最重要的谷物作物之一,在全球农业中占有突出地位。在印度,玉米仅次于水稻和小麦,位居第三。在印度,玉米用于谷物和饲料,以及家禽和牛饲料混合物的成分和其他工业用途。玉米也称为玉蜀黍,是世界上最重要和最具战略意义的作物之一。其原产地是墨西哥(中美洲)。它是一种 C4 植物,被称为“谷物皇后”,因为它具有高生产潜力和跨季节的广泛适应性。它高效利用太阳能,具有巨大的增产潜力,被称为“奇迹作物”。玉米通过优质蛋白质在确保粮食安全和营养安全方面发挥着至关重要的作用。玉米的营养成分(每 100 克)如下:蛋白质 4 克。碳水化合物 30 克,膳食纤维 3.5 克,脂肪 1.5 克,糖 3.6 克,钙 4 毫克,锌 0.72 毫克等。(Dragana 等人,2015 年)[8]。玉米植株的每个部分都具有经济价值(谷粒、叶子、茎秆、穗和穗轴),都可用于生产各种食品和非食品产品。全球 170 多个国家种植玉米,面积达 1.88 亿公顷,产量达 14.23 亿公吨。自 2005 年以来,印度玉米种植面积位居第四位,为 989 万公顷,年产量为 3165 万吨,位居第六。在印度各邦中,中央邦和卡纳塔克邦的玉米种植面积最高(各占 15%),其次是马哈拉施特拉邦(10%)、拉贾斯坦邦(9%)、北方邦(8%)、比哈尔邦(7%)、特伦甘纳邦(6%)。目前,印度生产的玉米 47% 用于家禽饲料,13% 用于牲畜饲料,13% 用于食品,淀粉工业消耗约 14%,加工食品占 7%,6% 用于出口和其他用途。(IIMR,2021 年)。磷的应用会影响植物的生长行为。它是生长、糖和淀粉的利用、光合作用、细胞核形成和细胞分裂、脂肪和蛋白形成所必需的。光合作用和碳水化合物代谢产生的能量储存在磷酸盐化合物中,供以后生长和繁殖使用(Ayub 等人,2002 年)[5]。它在植物体内很容易转移,随着植物细胞的形成,从较老的组织转移到较年轻的组织
关键词:轨道式振荡生物反应器 (OSB)、禽类 AGE1.CR.pIX 悬浮细胞、流感病毒、动物疱疹病毒、腺相关病毒 (AAV)、人胚胎肾 (HEK) 293 细胞、一次性灌注至高细胞密度、制造。悬浮细胞的预培养在摇瓶中成功完成。特别是新开发的设计细胞在高摇动频率下在摇瓶中传代多达 100 次,然后完美适应在具有 pH 控制和最大氧气供应(通常高于 80% pO 2 )的 CO 2 培养箱中生长。当它们随后被转移到搅拌槽生物反应器进行扩大时,特定细胞生长率通常较低,并且细胞对通过酸/碱添加和由于潜水器放气(气泡)而产生的剪切应力的 pH 控制变得敏感。禽类 AGE1.CR.pIX 和人类 HEK 293 细胞也出现了这种情况。为了避免这些问题,评估了在振荡模式下的扩大规模。这里我们介绍了 SB10-X OSB 生物反应器在袋子设计和控制单元改进方面的最新进展。引入了一种新的控制策略,从而可以更快、更精确地控制 pH 和 DO。此外,还优化了灌注袋,以便可以轻松连接一个或两个 TFF ATF 系统。这两项发展都带来了更强大的 SB10-X 系统,可以轻松执行批量、补料分批或灌注运行。在 10 L 一次性标准袋中,在化学定义的培养基 CD-U3(Biochrom-Merck,德国)中以 70 rpm 的摇动频率培养 Avian AGE1.CR.pIX 细胞(ProBioGen AG,德国)。对于灌注,使用了交替切向流系统(ATF2,Repligen,500 kDa 截止值)。感染流感病毒 A/PR/8/34 (H1N1) 后,MOI 为 0.001,工作体积从 5 升增加到 9 升,同时保持灌注。使用不同的填充体积评估 25 和 50 x 10 6 细胞/毫升的细胞浓度,以了解顶部空间通气的影响。总体而言,可以获得 3500 个病毒体/细胞的非常高的细胞特异性病毒产量,导致 HA 滴度高达 3.7 log 10(HA 单位/100 µL),感染滴度高达 8.8 x 10 9 TCID 50 /毫升。基于重组 AAV 的载体不仅是基因治疗目的的合适载体,而且还能够诱导针对各种抗原的强烈、主要是细胞的免疫反应。到目前为止,AAV 生产主要使用瞬时转染的贴壁人类 HEK 293 细胞(例如在细胞堆栈中),这对大规模 AAV 生产来说是一个重大挑战。在这里,我们测试了内部适应悬浮生长的 HEK 293 细胞,以通过一种允许简单扩大规模的过程生产 AAV9 的能力。因此,HEK 293 悬浮细胞在 5 L 化学定义的无血清培养基中培养,细胞密度为 1 x 10 6 个细胞/毫升,使用 SB10-X OSB 生物反应器,摇动频率为 65 rpm。24 小时后以 70 rpm 的振荡频率进行聚乙烯亚胺 (PEI) 介导的三重转染(包括 GFP 报告基因)。最后,转染后 48 小时,收获细胞和上清液进行 AAV 分离,并测定裂解物中 DNase I 抗性载体颗粒 (DRP) 的数量。由于转染效率高(基于 GFP 报告基因的转染率 >90%)且 SB10-X 系统中整个批处理过程性能良好,因此达到了 1.4 x 10 12 DRP/ml 或 7 x 10 15 DRP/批(5 L)范围内的制造相关 AAV 滴度。总之,在轨道上生产病毒可能是创新疫苗制造的一种有吸引力的替代方案。