金属氯化物配合物在温和条件下与Tris(三甲基甲硅烷基)磷酸反应,以产生金属磷化物(TMP)纳米颗粒(NPS),而氯甲基甲硅烷则作为副产物。与起始M-CL键更强的Si-Cl键的形成是反应的驱动力。通过使用[RUCL 2(Cymene)]和Tris(Trimet-hylsilyl)磷酸在35°C中制备该策略的潜力。将小(1.3 nm的直径为1.3 nm)和无定形NP形成,其整体RU 50 P 50组成。有趣的是,这些NP可以很容易地固定在功能支持材料上,这对于在催化和电催化中的潜在应用引起了极大的兴趣。mo 50 P 50和CO 50 P 50 NP也可以按照相同的策略合成。这种方法简单且通用,并为在轻度反应条件下制备广泛的过渡金属磷化物纳米颗粒的方式铺平了道路。
基本原理:使用Silybum marianum来防止退行性肝损害。其生物活性成分的分子机制,甲硅烷基蛋白仍然是神秘的,尽管膜稳定的特性,膜蛋白功能的调节和代谢调节已经讨论了数十年。方法:在基础和应力条件下以及体内小鼠中,在体外用肝细胞细胞系和原代单核细胞进行实验。定量脂肪组学用于检测磷脂和甘油三酸酯的变化。通过蛋白质印迹,定量PCR,显微镜,酶活性测定,代谢通量研究证实了关键发现,并使用选择性抑制剂研究了功能关系。结果:我们表明,具体来说,立体异构体a依赖丁A降低了甘油三酸酯水平和脂质液滴含量,同时富集了主要的磷脂类别,并在正常和前病前的体内和小鼠肝脏中保持人体肝肝中的人肝肝细胞中的稳态磷脂组成。相反,在基于细胞的脂质过载和脂肪毒性应激的基于细胞的疾病模型中,甲硅豆蛋白治疗主要耗尽甘油三酸酯。从机械上讲,甲硅烷基蛋白/甲硅烷基抑制磷脂降解酶,根据条件的不同程度诱导磷脂生物合成,并降低甘油三酸酯的重塑/生物合成,同时诱导复杂的复杂型固醇酸和酸性酸含量。富集肝磷脂和细胞内膜扩张与生物转化能力的增强有关。结构活性关系研究强调了甘油三烯烃A在甘油三酸酯还原中的1,4-苯甲二基二烷环构型的重要性,而在磷脂积累中,甘油三醇的饱和2,3-键。结论:我们的研究解释了助长肝脂质重塑的助长的结构特征,并表明,甲硅烷基蛋白/甲硅豆丁蛋白可以保护温和代谢失调的个体的肝脏,涉及脂质类从triglyciderides转换为磷脂的脂肪切换到磷脂的状态,它可能与磷酸化的状态相关。
抗N-甲基-D-天冬氨酸(NMDA)受体脑炎是一种特征良好的免疫介导的脑炎。越来越多地被认为是儿童脑炎的常见原因之一,但经常被误诊,尤其是在资源受限的环境中。有关最佳治疗策略的持续辩论。在本案报告中,尽管缺乏对甲基促甲硅烷的反应,但我们希望通过其对NMDA受体的直接影响来强调这种临床神经精神疾病对加巴喷丁的戏剧性反应。这种疾病应该是无法解释的行为/精神病症状和运动障碍的进行性脑病的患者的鉴别诊断。应在对照临床试验中进一步研究与加巴喷丁见证的改进。
这项为期5天的动手课程将提供一系列的讲座和示范,这些讲座和示范涵盖了隔离,纯化和结构表征的理论和技术,对聚,寡糖和糖偶联物的特征。参与者将使用气液色谱质谱法(GC-MS)学习糖基残基和糖基 - 连接组成分析的理论和技术。这些用于衍生化糖样品的方法,使乙醇酸酯和三甲基甲硅烷基衍生物以及部分甲基化的乙醇乙酸酯的产生,受训者通过GC-MS进行了分析。讲座和演示将涵盖通过质谱和NMR对多糖进行结构分析的技术,以及使用色谱技术,单糖和单糖类和寡糖使用HPAEC分离和纯化多糖的方法。
学期I BTM -111:生物化学I(3+0)1。生物分子的基本化学:碳水化合物,脂质,蛋白质和核酸2。氨基酸:分类和特性3。蛋白质:基于结构和功能的分类,蛋白质的结构组织(主要,次生,第三和第四纪结构)。4。光合作用:光合作用仪的结构,光和暗反应,C 3和C 4周期5。脂质:结构,属性,分类和功能BTM -112:微生物I(3+0)1。微生物学的历史,微生物学的范围,微生物多样性的概念2。显微镜:荧光,相对比,电子显微镜3。Eubacteria,古细菌,海洋资源和多样性和真核微生物的简介4。革兰氏正,革兰氏阴性和古细胞细胞之间的结构差异5。微生物生长:批次,连续和同步培养物6。微生物营养:光营养,趋化性,异育7.微生物介质:简单,微分和选择性8。纯文化技术:隔离,保存和维持培养物BTM -113:细胞生物学(3+0)1。简介:细胞理论,原核生物和真核细胞的结构组织。2。质膜:跨膜的结构组织,功能,运输。3。细胞细胞器:粗糙和光滑的内质网,高尔基体配合物,蛋白质运输,溶酶体,过氧化物酶体,液泡,线粒体,叶绿体的结构和功能。4。8。核和核仁,染色质结构和组织5。细胞骨架和额外的蜂窝矩阵6。细胞分裂:细胞周期和细胞周期的控制,细胞死亡(凋亡和坏死),癌症。BTM -114:生物化学Lab -I(0+2)1。生物化学单位2。生化实验室中使用的仪器/设备和玻璃商品3。溶液的浓度4。PH和确定5。缓冲区,它使用6。碳水化合物的定性测试7。通过O-甲硅烷法估计葡萄糖。 氨基酸的定性测试9。 蛋白质的定性测试。 10。 通过Biuret方法估计蛋白质。 11。 滴定强酸和弱酸的混合物12。 纸色谱法通过O-甲硅烷法估计葡萄糖。氨基酸的定性测试9。蛋白质的定性测试。10。通过Biuret方法估计蛋白质。 11。 滴定强酸和弱酸的混合物12。 纸色谱法通过Biuret方法估计蛋白质。11。滴定强酸和弱酸的混合物12。纸色谱法
维生素B12(钴胺素)是必不可少的微量营养素,在DNA合成,细胞复制和维持基因组稳定性中具有关键作用。其生化功能是通过两个酶促反应介导的,这些酶促反应对于核苷酸生物合成和甲基化循环的正常功能至关重要。首先,维生素B12充当蛋氨酸合酶的辅助因子,蛋氨酸合酶是一种酶,负责将同型半胱氨酸对甲氨酸的再甲基化。蛋氨酸随后转化为S-腺苷硫氨酸(SAM),这是用于DNA,RNA,RNA,蛋白质和脂质甲基化的主要甲基供体供体。DNA甲基化是调节基因表达的关键表观遗传机制,可确保正确的染色质结构和基因组稳定性。由于维生素B12缺乏而导致的该途径中的破坏会导致异常的DNA甲基化模式,这些模式与各种病理状况有关,包括癌症,心血管疾病和神经退行性疾病。其次,维生素B12参与通过甲基甲基甲基甲酰基-COA突变酶转化甲基甲硅烷-COA到琥珀酰-COA。这种反应对于奇数链脂肪酸和某些氨基酸的分解代谢至关重要,并且在DNA的构成块的脱氧核糖核苷酸的合成中也起作用。由于维生素B12缺乏而导致的甲基甲硅烷-COA突变酶的功能受损导致甲基甲酸的积累,这会破坏线粒体功能并有助于神经毒性。在临床上,维生素B12缺乏表现出各种血液学和神经系统症状。最值得注意的是大型贫血贫血,其特征是血液中存在大型,不成熟和功能失调的红细胞。这种情况是由DNA合成受损引起的,DNA合成导致无效的红细胞生成和细胞分裂的停滞。神经系统并发症,包括周围神经病,认知衰落和骨髓病,也很常见,这是由于髓磷脂合成和维持的破坏而引起的。总而言之,维生素B12对于维持DNA完整性,有效的细胞复制以及血液学和神经系统的整体健康是必不可少的。这种维生素的足够水平对于防止DNA损伤,支持适当的甲基化过程以及预防缺乏症的长期后果至关重要,包括贫血,神经变性和疾病易感性提高。
旨在更好地了解这些稳健键的键合和反应性的研究已成为追求核废料修复的中心研究点。已经报道了在铀酰疾病中官能化U = O键的几种方法,最流行的是通过与甲硅烷基离子的反应性使用还原性裂解(图1)。4,5 One of the first reported examples detailing activation of the uranyl(VI) dioxo moiety was detailed by Ephritikhine in 2006, in upon the addition of excess silylating reagent (Me 3 SiX, where X = Cl, Br, or I), UO 2 I 2 (THF) 3 or UO 2 (OTf) 2 are converted to a tetravalent uranium halide salt, UX 4 (MECN)4。3这种反应性利用了强Si -O键形成的热力学驱动力,从而通过相应的卤化物的氧化来促进铀氧键的还原性裂解。6后来,爱与同事报告了通过还原性的硅烷基硅烷二烯化的键键激活的机理的进一步见解。在这项工作中,铀酰的协调
在非水氧化还原流量电池中的交叉仍然是对这些设备的cy稳定性的关键挑战。使用双极氧化还原活性材料是缓解跨界的新兴策略。在本文中,我们报告了源自异地碱氮氧化物的双极rom的第一个例子,这是一个环类别,该类别在更常用的哌啶中给出了许多拟合,包括更大的稳定性和200mv更高的氧化潜力。通过便捷的合成转化,未取代的异丁氏硝氧化物被硝化,从而提供了一种新型的双极分子,5-硝基-1,1,1,3,3-四甲基甲硅烷基-2-羟基(NTMIO)。该材料是用电化学材料进行的,在该材料中给出了两个可逆峰,开路电压为2.1V。ntmio作为活性材料,在该模型中,对于超过70个循环,观察到氧化和还原氧化还原夫妇均观察到稳定的循环。
已被利用以在化合物中提出四分和高配位,例如[C(AUPR 3)4]和[C(AUPR 3)5] +。[13–17]在此表明,单个金原子也可以表现出类似于氢原子的化学。我们报告了实验和理论证据,表明一系列的Si -Au簇[Siau n](n = 2-4)在结构和电子上与SIH n相似。相应[siau n]阴离子的光电光谱(PES)表明,[siau 4]的较大能隙为2.4 eV,因此表明非常稳定的分子。从头算计算表明,[Siau 4]具有理想的四面体结构,而[siau n]中化学键的性质具有与Sih n中的一对一的对应关系。甲硅烷的化学稳定性[siau 4]表明它可以合成为孤立化合物。目前的发现也与了解技术重要的硅及其界面中的化学相互作用有关。通过混合Au – Si靶的激光蒸气产生硅簇,并通过PES研究了它们的电子结构(请参阅实验部分)。图1显示了两个不同的
摘要:微生物色素通常比其他天然色素优选,因为它们易于扩展,快速的颜料提取方法和简单的培养过程。因此,本文的目的是使用适当的微生物和分析标准程序隔离和鉴定从尼日利亚拉各斯州阿利莫索地方政府地区农场土壤中产生棒状细菌的黄色色素。鉴定分离株显示出革兰氏阳性黄色色素产生棒状细菌为iodinum。使用0.4 OD(600nm)的5%接种物(600nm),在pH7(120rpm)下,在pH7(35°C)的营养肉汤中实现了碘芽孢杆菌生产的最佳条件。在这些最佳条件下,生物质的1.2g/l总共产生了0.225g/l的粗色色素。黄色颜料在455nm时显示出最大的吸收。对粗色色素的GC-MS分析揭示了主要化合物,例如甲氧胺。顺式-10-甲基酸,甲基酯;乙酸,2- [BIS(甲基硫硫代)甲基] -1-苯基氢氮杂和4-甲基-2-三甲基甲硅烷基 - 乙烯酮