飞机系统电气化、电力推进研究以及从根本上对电动飞机的资金和商业投入一直呈上升趋势。电气化不仅能够减少排放,还可以释放更节能的飞机以及全新架构和用例的潜力。电气化还可能彻底改变航空航天业的供应基础,对现有供应商构成生存威胁,并为新进入者提供进入市场的机会。在本次 Think:Act 中,罗兰贝格评估了电动飞机的前景和可能的应用,以及在发生任何重大变化之前需要克服的许多技术和监管障碍。我们首先讨论电动飞机的历史以及更多电动飞机和电力推进这两个同时发生的技术趋势。然后,我们描述和评估电力推进领域研究工作的现状,考虑通用航空(GA)/休闲飞机、城市空中出租车、区域/商务飞机和大型商用飞机的发展。
1 越南河内河东区 Yen Nghia 坊 To Huu 街 Phenikaa 大学车辆与能源工程学院 2 韩国庆尚南道金海市 Eobang-Dong 607 号仁济大学机械工程系和高安全车辆核心技术研究中心 621-749 * 电子邮件:mechkhm@inje.ac.kr 收稿日期:2020 年 2 月 17 日/接受日期:2020 年 4 月 2 日/发布日期:2020 年 5 月 10 日 无人机 (UAV) 是一种没有人类飞行员的飞机,因此无人机的主要应用是无人员损失的监视。低空监视飞机是在小型机身中使用光传感器有效载荷的基础。由于监视通常需要秘密进行,因此静默飞行的能力允许使用低空飞机。对于无人机推进系统,光伏电池可用于在白天收集太阳能,其中一部分直接用于为推进装置和机载仪器供电,而剩余部分则存储在储能系统中以供夜间使用。在这种情况下,存储在电池和燃料电池中的电化学能源是两种最佳候选能源,因为它们的重量能量密度最高。总之,本综述旨在提高配备混合电力推进系统的无人机的高空长航时能力。关键词:无人机;光伏电池;燃料电池;混合电力推进系统;高空长航时 1. 引言
正如我们在科幻电影中不断看到的使用离子或电力推进进行星际太空旅行的情况一样,即使不是星际科学家也已经开始将这项技术视为星际技术的一种选择,它是高效燃料使用和电力的完美结合,它比任何其他技术都非常便宜和快捷。在物理学中,离子推进是航天器使用的一种电力推进。与任何传统的火箭推进方法一样,离子推进依赖于牛顿第三定律:每个作用都有一个相等和相反的反作用。典型的火箭发动机使用内部机制加速某种类型的废气远离火箭。由于这构成了废气上的力,发动机会受到相反方向的力。至关重要的是,推进需要损失质量
从微型卫星到大型卫星,从低轨道卫星到探测航天器,各种用途的卫星都已出现。近年来,采用全电推进的卫星也得到了发展,采用电推进的卫星数量也在逐渐增多。本文主要介绍目前
摘要 介绍了由空间电推力器系统(SETS)设计的电力推进系统 SPS-25。该系统输入功率为 150 – 250 W,由以下部分组成:霍尔推力器 ST-25;氙气存储和供给系统 (XFS) 和电源处理单元 (PPU)。在参考输入功率(150 – 250 W)下,ST-25 提供 5 – 11 mN 的推力,高达 1200 s 的比冲,效率在 26 – 32% 范围内。ST-25 结构的特点是,为了减少加速通道中形成径向磁场所需的电功率,在中心磁极使用永磁体。氙气存储和供给系统由聚合物复合材料制成的用于储存工作物质的罐组成,可在 150 bar 压力下储存氙气;高压单元,用于将蓄能器罐中的压力降至 1.0-1.2 巴,低压单元,用于将工作物质以设定的质量流速从蓄能器罐供给到阳极单元和空心阴极。对于工作物质的储存和供给系统的结构,SETS 公司设计了高压(最高 200 巴)和低压(最高 5 巴)阀。为了向阳极和空心阴极提供设定的质量流速的工作物质,SETS 公司开发了相应的流量限制器。电源处理单元由几个独立的电源组成:阳极单元的放电电源;推进器电磁铁的电流源;空心阴极加热器的电流源;供给系统的电压源。功率处理单元还包含推进系统的控制单元,该控制单元获取推进系统的开启和关闭命令,为推进系统提供工作,并形成有关推进系统子系统状态的遥测信号并将信号传输到控制系统。
在高功率区域和大型商业应用中,燃气轮机很可能被用作混合动力装置中的燃料燃烧组件。重要的设计考虑因素包括系统集成,以及应用哪些设计参数和非设计参数。当前的燃气轮机需要在整个飞行范围内提供推力,处理不同的输入空气速度和一系列非设计条件。相反,混合动力电动发动机的非设计情况要少得多,并且能够在整个飞行范围内以“设计”转速运行,电池可帮助管理起飞、着陆/推力反转和飞行事故期间的功率输出峰值和低谷。因此,混合动力电动燃气轮机可能遭受的损坏更少,需要的维护也更少,从而为运营商创造一个潜在的成本降低领域。
推进系统的特性可在档案文献中找到。鉴于此,本研究的目的是确定由电动机驱动的直径在 4.0 至 6.0 英寸范围内的各种小型螺旋桨的性能。设计和建造了一个实验测试台,其中螺旋桨/电动机安装在风洞中,以进行静态和动态测试。将本实验的静态和动态结果与以前的研究结果进行了比较。对于静态测试,推力系数、螺旋桨功率系数和总效率(定义为螺旋桨输出功率与电输入功率之比)与螺旋桨转速的关系图。对于动态测试,螺旋桨的转速在规则间隔内保持不变,同时自由流空速从零增加到风车状态。推力系数、功率系数、螺旋桨效率和总效率与各种转速的前进比的关系图。发现推力和扭矩随着转速、螺旋桨螺距和直径的增加而增加,随着空速的增加而减小。使用现有数据以及来自档案和非档案来源的数据,发现方形螺旋桨的推力系数随螺旋桨直径的增加而增加,其中 D = P 。螺旋桨系列的推力系数(sam