摘要:随着多电/全电飞机的发展,特别是混合电推进或电力推进飞机的进步,在电力需求不断增长、散热能力受限的情况下,必须解决飞机能量系统设计和运行优化的问题。本文概述了飞机电源系统架构优化和能量管理系统的研究现状。本文从多能源形式的角度回顾了飞机电源系统架构优化的基本设计方法。可再生能源如光伏电池和燃料电池被融入机载电源系统,由于其不确定性和功率响应速度,也使得飞机能量优化分配问题变得复杂。本文分析并介绍了飞机电源系统优化、评估技术和动态管理控制方法的基本思想和研究进展。总结了飞机能源系统架构工程设计优化方法的发展趋势,并从重量、可靠性、安全性、效率、可再生能源特性等约束条件下的多目标优化中得出。根据飞机的不同功率流关系,对基于能源效率和电能质量的成本函数进行了评论和讨论。本文将不同飞机微电网架构的动态控制策略与其他方法进行了比较。回顾了一些电力推进飞机和多电飞机的综合能源管理优化策略或方法。分析了飞机能量优化技术的数学考虑和表达,并比较了一些特点和解决方法。结合一些参考文献,讨论了热能和电能耦合关系研究领域以及飞机电力系统的电能质量和稳定性。最后,本文还对未来机场微电网与电力推进飞机动力系统的能量交互优化问题进行了探讨和预测。本文基于EMS和架构优化的最新技术发展,提出业界对飞机动力系统电气化的常识和未来趋势,并提出在电气化飞机推进系统架构选择中应遵循的EMS+TMS+PHM
飞行研究 (RIF) 和奥本大学正在开发一种先进、强大的工具,该工具可以模拟和建模分布式电力推进 (DEP) 支持的城市空中交通 (UAM) 车辆概念的阵风和尾流涡流遭遇。这将允许在设计周期的早期发现车辆设计中的潜在缺陷,并在必要时使用阵风载荷缓解技术进行缓解。
具有多轴推力矢量的纤维馈电脉冲等离子推力器 (FPPT) IEPC 2022-558 在第 37 届国际电力推进会议上发表 麻省理工学院,美国马萨诸塞州剑桥 2022 年 6 月 19 日至 23 日 Curtis A. Woodruff 1、Magdalena Parta 2、Darren M. King 3、Rodney L. Burton 4 和 David L. Carroll 5 CU Aerospace (CUA),美国伊利诺伊州香槟市 61822 摘要:CU Aerospace (CUA) 开发了同轴纤维馈电脉冲等离子推力器 (FPPT),具有多轴推力矢量能力,可为小型卫星实现高脉冲主推进任务。推进器子系统测试采用 1.7U 系统配置,配备 26 J 储能单元 (ESU),运行功率为 78 瓦 (3 Hz),平均推力为 0.60 mN,比冲为 3,500 s,效率为 13%。推进器性能随燃料进给率而变化。加速子系统寿命测试显示,电容器充电/放电循环次数超过 16 亿次,电流波形几乎相同。独立控制输入功率和推进剂进给率的能力允许调整推力水平和 Isp。迄今为止的测试表明,电磁推力矢量控制能力在俯仰和偏航轴上达到 ±10 度左右。此外,该系统还有可能提供对滚转轴的控制权。俯仰和偏航推力矢量控制性能与最近的推进器性能改进一起展示。一台总冲量为 28,000 Ns 的 1.7U FPPT 正在集成到 CUA 的 NASA 资助的双推进实验 (DUPLEX) 立方体卫星上,目前计划于 2023 年第一季度发射。FPPT 技术是一种极具吸引力的选择,可以满足许多微推进需求,包括延长轨道机动、防撞机动、深空任务、阻力补偿和脱离轨道。命名法
欢迎回来!我知道过去的一年对许多人来说都是艰难的,我非常感谢你们的奉献。在我们开始 2021 年之际,您的健康和安全仍然是我的首要任务。考虑到这一点,我们将继续进行第二阶段的准备工作,并期待继续成功实现我们的关键太空和航空任务重点,包括 Artemis/Orion、电力和电力推进、电动飞机技术以及我们设施中的关键测试。我们还将投资和改造我们的基础设施以支持我们的使命,并进一步发展我们的伙伴关系、协作和沟通,以促进创新和技术商业化。和我一起安全、卓越地实施我们的优先事项。新年快乐,
彻底改变传统的生产模式。例如,OneWeb Satellites 计划在 18 个月内生产 700 到 900 颗卫星,每天生产 4 颗卫星,而目前每年生产 10 颗左右。新的机会包括卫星互联网、可重复使用的火箭和电力推进等。除了这场工业革命之外,我们还目睹了使用创新的激增。这种扩散的主要原因是进入太空的成本降低。航天领域已进入工业生产时代,每公斤进入轨道的价格几乎减半。因此,新来者带着新想法进入市场。因此,我们必须期待看到与改进卫星观测技术相关的雄心勃勃的服务的到来。
提出了一种分布式电力推进多旋翼飞机的新设计方法,以确保从控制角度对转子故障具有鲁棒性。基于零可控性概念,推导出一个质量指标来评估和量化考虑转子故障的情况下给定设计的性能。制定了一个优化问题,其成本函数基于质量指标,其最优解确定了一组最优设计参数,可最大程度地提高飞机控制其姿态和位置的能力。通过对加州理工学院自主系统与技术中心正在开发的自主飞行救护车模型进行实验的结果,验证了所提出的设计程序的有效性。
2. 电力系统:放射性同位素电力推进 (REP):利用钚-238 等同位素自然放射性衰变产生的热量来发电。REP 系统紧凑可靠,是小型到中型任务的理想选择,尤其是在可以接受长时间运行和低功率要求的情况下。它们通常提供 1 千瓦范围内的功率,足以为科学仪器和低推力推进系统(如离子发动机)供电。旅行者号、好奇号和毅力号等著名任务已成功展示了该技术和任务可靠性。裂变电力推进 (FEP):它们依靠核反应堆通过受控核裂变反应发电。与 REP 不同,FEP 系统可以产生更高的功率,通常在 8-10 千瓦之间,是前往谷神星、木卫一、土卫六和木卫二等潜在目的地的先驱无人任务的理想选择。与传统卫星相比,FEP 系统具有可扩展性和灵活性,可承载更大的有效载荷并缩短运输时间。研究表明,人们正在积极研究它们,以用于未来的载人火星任务和外行星探索,而长期高功率需求至关重要。将这项技术集成到先进的航天器中可以帮助航天器运行更长时间。3. 航天器裂变动力的主要优势:[1] 更高的功率输出:与传统的太阳能或化学动力系统相比,裂变动力系统可提供更高的功率水平,使高能科学仪器、先进的推进系统和栖息地支持系统能够运行,用于多行星和深空载人任务。[2] 高功率任务的成本效益:对于需要功率输出超过 1 kWe 的任务,裂变系统比放射性同位素动力系统更具成本效益。这使它们成为具有大量能源需求的长期任务的理想选择。[3] 高功率需求的低质量:当功率要求超过
产业园区改造、本土企业支援、产业集群竞争力提升项目、船舶研发、①、②、建立海洋环保船舶新一代隔热材料零部件研发基地、海上风电基础设施、④、设计生产专业技术开发、电池再利用、电力推进小型船舶及系统、ECU、⑤、基于氢燃料电池的休闲船建造示范项目、建立中小型船舶下水场基础、⑥、⑦、建立中小型船舶高速发动机智能寿命诊断管理支持系统、⑦、⑨、专业教育中心、船舶生产技术专业人才培养项目、智能制造高级人才培养、O&M、⑩、⑪、支持大中小互利联合培训中心、⑫
自1870年代内燃烧引擎(ICE)出现以来,汽车行业经历了重大的进步和转变。这种追求是为了实现对跨国货物和人民的更高效和成本效益的运输。在过去的一个世纪中,该行业目睹了动力总成组件(例如发动机和传输)的创新,以满足消费者和监管要求,以提高燃油经济性和马力。结果,这些组件中使用的材料必须轻巧,耐用,并且能够承受高热和机械载荷,同时可以制造复杂的3D几何形状。随着汽车行业向电气化转向减轻碳排放,对创新材料的需求将更大。随着汽车制造商在电力推进和电池应用中开发新颖的解决方案,这种需求将继续增长。