摘要 — 电动飞机的电力推进驱动器需要轻便高效的电源转换器。此外,驱动器的模块化构造方法可确保降低成本、提高可靠性和易于维护。本文首次报道了额定功率为 100 kW、1 kV 直流链路的模块化直流-交流三级 T 型单相桥臂电力电子构建块 (PEBB) 的设计和制造过程。由硅 IGBT 和碳化硅 MOSFET 组成的混合开关被用作有源器件,以实现高功率下的高开关频率。拓扑和半导体选择基于基于模型的设计工具,以实现高转换效率和轻量化。由于没有商用三级 T 型功率模块,设计了基于 PCB 和现成分立半导体的大功率开关用于中性点钳位。此外,还设计了一种非平凡的铝基多层层压母线,以促进所选有源器件和电容器组的低电感互连。测量的电感表明母线中的两个电流换向回路对称,值在 28 - 29 nH 范围内。估计该块的比功率和体积功率密度分别为 27.7 kW/kg 和 308.61 W/in3。证明了该块在 48 kVA 下的连续运行。测量结果显示该区块的效率为 98.2%。
信息 为了实现可扩展且雄心勃勃的电动汽车计划和制造以满足气候缓解目标,印度需要一个强大的生态系统来本地开发电动汽车技术,以使转型具有成本效益和高质量,并最大限度地提高本地价值链的经济收益。这需要一个有效的框架和路线图,以促进电池存储、电力推进、新材料、工艺和先进制造能力等领域的本地创新。 强大的研发 (R&D) 生态系统可以开发和生产安全且适合在印度气候条件下使用的电池。 因此,科学与环境中心非常感谢这次机会,可以与广泛的行业利益相关者和行业专家合作,评估和制定这份白皮书。这使得集体评估国家电池开发计划的潜力成为可能,该计划可以促进大规模电池生产和成熟电池技术的商业化,开发新的电池化学以最大限度地减少进口依赖,本地化价值链,通过循环加强材料安全,并使技术开发达到更高的技术水平,为商业化做好准备。因此,本研发路线图确定了生态系统的关键途径以及由不同技术机构、研究实验室和行业合作伙伴采取一致行动的战略。这可以使研发联盟能够调动知识、技能和资源,以支持成熟市场的细胞成分开发和商业化。
根据管理协议,NASA 的责任摘要:N/A 1.1 即将完成的任务里程碑时间表: ˆ 航天器发货:2023 年第一季度 ˆ 首次发射:2023 年第二季度 1.2 任务概述:Starfish Otter Pup 任务是一艘演示太空拖船,旨在测试低地球轨道 (LEO) 中的会合、近距操作和对接 (RPOD) 技术。Otter Pup 将与客户航天器(名为 Orbiter 的 Launcher Inc. 轨道转移飞行器 (OTV))分离、接近和对接。主要有效载荷由 Starfish Space 制造,包括 Nautilus 捕获机制、CETACEAN 相对导航软件和 CEPHALOPOD 制导和控制软件。其他有效载荷(Exotrail SA 提供的电力推进推进器和 Redwire 提供的用于相对导航的 Argus 相机)集成到基于 Astro Digital Micro+ 设计的航天器总线中。这种标准化卫星平台使用反作用轮、磁矩线圈、星跟踪器、磁力计、太阳传感器和陀螺仪,无需使用推进剂即可实现精确的 3 轴指向。1.3 运载火箭和发射场:托管在 Launcher Orbiter OTV 上,由 SpaceX Falcon 9 拼车任务发射,发射场为卡纳维拉尔角太空发射中心。1.4 拟议的初始发射日期:2023 年第二季度,SpaceX Transporter-8
1. 学院 11 1.1 IIST 概况(2022-23 年) 12 1.2 法定机构 16 1.2.1 IIST 管理机构 16 1.2.2 IIST 理事会 16 1.2.3 IIST 管理委员会 16 1.2.4 IIST 财务委员会 17 1.2.5 IIST 学术委员会 18 1.3 学术、行政和其他单位的职能部门 2. 学术部门 22 2.1 航空航天工程系 23 2.2 航空电子系 35 2.3 化学系 46 2.4 地球与空间科学系 52 2.5 人文系 60 2.6 数学系 64 2.7 物理系 70 3. 学术课程 78 3.1 本科课程 79 3.2研究生课程 82 3.3 博士课程 83 3.4 毕业典礼 85 3.5 授予学位 86 3.6 博士学位论文和授予的学位 87 3.7 学术荣誉 88 3.8 实习 89 4. 研究与开发 96 4.1 IIST 的重点研究领域 97 4.2 IIST 的空间技术研究 98 4.3 IIST 的混合火箭开发 101 4.4 IIST 的卫星地面站 101 4.5 电力推进和诊断设施 102 4.6 卓越中心 103 4.7 高级空间研究小组 (ASRG) 105 4.8 外部资助项目 110 4.9 ISRO 资助项目 113 4.10 最近的太空任务计划 116 4.11 谅解备忘录和合作 116 4.12 IIST 的空间技术创新和孵化中心 (STIIC) 117 4.13 IIST 初创公司开发的产品和技术转让118
背景 3 美国宇航局主要项目组合的成本和进度表现预计将恶化,月球计划面临挑战 10 美国宇航局在展示技术成熟度和设计稳定性方面总体上保持了项目组合的进展 20 美国宇航局正在采取行动,以识别和应对导致收购风险的挑战 27 项目评估 33 制定阶段项目的评估 36 蜻蜓 37 星际测绘和加速探测器 (IMAP) 39 动力和推进元件 (PPE) 41 Restore-L 43 宇宙历史、再电离时代和冰期探测器 (SPHEREx) 的光谱光度计 45 广角红外巡天望远镜 (WFIRST) 47 实施阶段项目的评估 49 商业载人航天计划 (CCP) 51 双小行星重定向测试 (DART) 53 木卫二快船 55 地面探测系统 (EGS) 57 詹姆斯·韦伯太空望远镜 (JWST) 59 Landsat 9 61 激光通信中继演示 (LCRD) 63 低空飞行演示器 (LBFD) 65 露西 67 火星 2020 69 美国国家航空航天局 (NASA) ISRO – 合成孔径雷达 (ISRO) 71 猎户座多用途载人飞船 (Orion) 73 浮游生物、气溶胶、云、海洋生态系统 (PACE) 75 灵神 77 太阳能电力推进 (SEP) 79 太空发射系统 (SLS) 81 太空网络地面段支持 (SGSS) 83 地表水和海洋地形 (SWOT) 85 机构评论 87
高温超导 (HTS) 带可以通过非常细的导线传输非常大的电流,而且没有电阻。这意味着 HTS 带可以缠绕成不产生热量的轻质高场电磁铁。因此,HTS 电磁铁在太空领域非常有用,因为太空领域对尺寸和重量有极大的限制,而且很难通过辐射方式消散传统铜电磁铁产生的热量。因此,HTS 被认为是一种小型化技术,能够在小型卫星上产生高磁场,用于电力推进、辐射屏蔽、姿态控制和感应储能等应用。HTS 设备需要在低温下运行,通常在 77 K 或以下。使用电制冷机可以在太空中保持这些低温。制冷机的性质及其与 HTS 电磁铁的集成方式对 SWaP(尺寸、重量和功率)要求有重大影响。本文介绍了旨在集成到立方体卫星中的 HTS 电磁铁设计的建模和初步物理测试。这项工作采用数值建模和实验相结合的方法,研究了单个微型低温冷却器是否可以将 HTS 电磁铁冷却到临界温度以下。使用 Sunpower CryoTel MT 低温冷却器,重量仅为 2.1 千克,长度和直径分别仅为 243 毫米和 73 毫米,仅使用 40 W 的输入功率即可获得低于 75 K 的电磁铁温度,同时保持 40 °C 的热端温度。这表明 HTS 电磁铁可以使用微型单级低温冷却器在小型卫星上运行。
摘要 由于太空创新技术的使用,近年来太空服务的重要性显著增加。在开发新方法和新技术时,必须在真实操作条件下直接在太空中测试功能性和稳健性。然而,这在今天仍然是一个困难,因为研究人员和开发人员如果不花费大量的时间和成本就无法实现这种在轨演示的能力。慕尼黑联邦武装部队大学 (UniBw M) 在各个研究中心针对太空旅行和太空服务的各种相关主题开展创新开发和研究工作。作为对地面实验室已开展的研究工作的补充,我们引入了在轨演示和测试计划,作为迈向敏捷研究和开发过程的下一步。作为该计划的核心,UniBw M 正在开展一项名为空间互联网无缝无线接入网络 (SeRANIS) 的技术演示项目。 SeRANIS 的目标是通过在低地球轨道上的小型卫星 ATHENE-1 进行大量创新实验,提供快速部署的多功能太空任务。 ATHENE-1 计划于 2025 年发射升空。 SeRANIS 为研究人员提供了一个科学环境,以便共同研究、评估、开发、验证和展示太空和地面的新方法和技术。科学领域包括空间通信,包括宽带通信和物联网、无线电科学、基于人工智能的自主性、全球导航卫星系统技术、光学和红外地球观测以及物体识别算法。此外,还将展示卫星运行的新概念、现代结构、监测系统状态的创新技术以及太空电力推进。本出版物介绍了 SeRANIS 项目。介绍了项目框架、进度安排、项目现状以及卫星平台的选择。此外,还对此次任务的科学研究领域、任务架构、基本设计和轨道选择进行了说明。
无论是军用飞机还是民用飞机,提供足够的热管理都变得越来越具有挑战性。这是由于机载热负荷的量级显著增加,也是由于其性质的变化,例如存在更多低品位、高热通量热源,以及一些废热无法作为发动机废气的一部分排出。复合材料使用的增加提出了另一个需要解决的问题,因为这些材料在将废热从飞机转移到周围大气方面不如金属材料有效。这些热管理挑战非常严峻,以至于它们正在成为提高飞机性能和效率的主要障碍之一。在这篇评论中,我们将阐述这些挑战,以及文献中可能的解决方案和机会。在介绍来自周围环境的相关因素后,对挑战和机遇的讨论将通过对热管理系统中涉及的元素进行简单分类来指导。这些元素包括热源、热获取机制、热传输系统、向散热器的散热以及能量转换和存储。热源包括来自推进系统和机身系统的热源。热获取机制是从热源获取热能的手段。热传输系统包括冷却回路和热力学循环,以及相关组件和流体,它们将热量从热源移动到散热器,可能经过很长的距离。终端飞机散热器包括大气、燃料和飞机结构。除了讨论热管理系统的这些不同元素外,还详细讨论了飞机热管理研究中几个特别优先的主题。这些主题包括电力推进飞机、超高涵道比齿轮传动涡扇发动机和高功率机载军用系统的热管理;环境控制系统;动力和热管理系统;超音速运输机的热管理;以及热管理的新型建模和仿真过程和工具。
卫星在非常低的地球轨道(VLEO)中的操作与航天器平台和任务设计的各种好处有关。至关重要的是,对于地球观察(EO)任务,降低高度可以使较小且功能较小的有效载荷能够实现与较高高度处的较大仪器或传感器相同的性能,并具有对航天器设计的显着好处。因此,对这些轨道的开发的重新兴趣刺激了新技术的发展,这些技术有可能在此较低的高度范围内实现可持续运营。在本文中,为(i)新型材料开发了系统模型,这些材料可以改善空气动力学性能,从而减少阻力或增加对原子氧侵蚀的抵抗力以及(ii)大气 - 呼吸电力推进(ABEP),以持续的阻力补偿或VLEO减轻。还讨论了可以利用VLEO中空气动力和扭矩的态度和轨道控制方法。这些系统模型已集成到概念级卫星设计的框架中,该方法用于探索这些新技术启用的未来EO航天器的系统级交易。对光学高分辨率航天器提出的案例研究表明,使用这些技术降低轨道高度的显着潜力,并表明与现场与现行现状的任务相比,与现行成本相比,可以节省多达75%的系统质量和超过50%的开发和制造成本。对于合成的孔径雷达(SAR)卫星,质量和成本的降低显示为较小,尽管目前据指出,目前可用的成本模型并未捕获该细分市场的最新商业进步。这些结果是维持VLEO运营所需的其他推进和权力要求,并指出未来的EO任务可以通过在此高度范围内运行而受益匪浅。此外,已经表明,只有已经开发的技术的适度进步才能开始剥削该较低的高度范围。除了减少资本支出和更快的投资回报率,降低成本和增加获得高质量观察数据的上游收益外,还可以传递给下游EO行业,以及各种商业,社会和环境应用领域的影响。
数百万飞行物的空中交通管理:一种替代方法 Dennis M. Bushnell 简介 20 世纪后期,民用航空运输包括商业定期航班和使用人类驾驶的小型飞机的通用航空。从那时起,各种技术革命及其对技术能力、小型化和成本降低的影响使民用航空的第三个组成部分成为可能:无人机。无人机或无人驾驶飞机系统 (UAS) 的潜在市场价值每年超过 1 万亿美元,是民用航空市场的两倍(参考1)。这个 UAS/无人机组件正处于非常快速的增长轨道上,在服务、政府、科学、商业任务(包括配送、检查、农业、测绘、搜索和救援、消防、边境巡逻、执法、保护、房地产等)中的应用蓬勃发展。它还使百年航空梦想得以实现:用经济实惠、安全的个人飞行器来运送人类。在无人机出现之前,民用飞机是由人类驾驶的,数量达数千架。即便现在,UAS 飞行器的数量也达数百万,而随着它们取代汽车,其数量实际上正在达到数千万架。支持技术将提高 UAS 能力并进一步降低成本。这些技术包括大大提高耐用性的具有卓越微观结构的纳米印刷材料、印刷制造、自主性、电力推进和先进的电池/燃料电池,以及规模经济。目前正在开发大量 UAS 飞行器设计,旨在实现城市空中交通、按需交通和个人飞行器 (PAV) 的载人运输(参考2)。展望未来,这些技术将为不断增加的飞行器尺寸和速度提供自主性和电气化,甚至达到超音速(参考文献1)。这些新型航空机器的低成本将导致数千万架此类飞机飞上天空。其中大多数将在发达和人口稠密的地区运行,可能带来安全隐患(参考文献3)。目前,这些新航空市场快速发展的主要问题是非飞行器专用的基础设施,包括着陆/起飞区域,尤其是在城市地区,最重要的是安全和进入空域(参考文献 4)。目前的共识似乎是,虽然近期的修改和增加将有助于 UAS 引入初期的空中交通管理,但城市空中交通
