17 图 2:启动电机时产生的 RMS 电压和电流 28 图 3:电力传输和分配 29 图 4:120/240 V 单相服务 29 图 5:典型的 208 V 三相星形连接服务 30 图 6:接地星形连接 31 图 7:典型的住宅服务 31 图 8:带有分支配电板的服务 32 图 9:典型的变压器安装 34 图 10:没有正确设备连接的设备 34 图 11:具有正确设备连接的设备 36 图 12:电能质量问题的要素 40 图 13:计算机对线路电压变化和干扰的敏感性曲线 - ITIC 曲线 50 图 14:谐波在基波上的叠加:最初同相 51 图 15:谐波在基波上的叠加:最初异相 52 图 16:谐波的主要来源 53 图 17:三相控制负载产生的谐波
电压控制(无负载<1%)•平衡和不平衡的电压故障条件(ZVRT,LVRT和140%HVRT) - 在13.2 kV和34.5 kV和34.5 kV端子上的每个阶段的独立电压控制•响应时间 - 响应时间 - 不到1毫秒,从全电压到零的续航时间,或从Zero sere sere sere sere sere sere serabor in ZERO,或从Zero sere sere serim serim in Zero seremece in Zero serem in Zero serim in Zero serem in ZERO•零件的续航时间•均值为零,或者是零射击的固定•组件•长期对称电压变化(+/- 10%)和电压幅度调制(0-10 Hz) - SSR条件•可编程阻抗(强和弱网格(强和弱),与POI相对应的宽度范围,与250 MVA的短路电压表现出250 MVA)•受控伏特的扭曲量(0-2)逆变器耦合的生成和负载•任何系统的全季度反应能力表征
摘要 — 准确预测元件的剩余使用寿命 (RUL) 是电子电路中的主要关注点。基于 RUL 的健康诊断在确定设备故障时间方面发挥着重要作用,可作为工业应用中的预警。本文提出了一种基于长短期记忆 (LSTM) 的回归模型,利用设备最基本的提取电气特征来预测环形振荡器 (RO) 电路的 RUL。LSTM 网络能够捕获时间序列数据中的时间依赖性并消除传统循环神经网络 (RNN) 中遇到的梯度消失问题。从 Cadence 模拟中,利用 22 nm CMOS 技术库,已经证明 RO 频率退化主要取决于三个主要因素,包括工作温度、电压以及最重要的设备老化参数。结果表明,13 和 21 阶段的 RUL 预测结果中超过 90% 的案例受电源电压变化限制,变化范围为 0.7 V 至 0.9 V,预测偏差最小为 2 天至 6 天。关键词:老化、剩余使用寿命、机器学习、在线预测、可靠性
位置传感器是一个反馈设备,也是任何闭环致动空间机构的组成部分。此反馈设备通常是电位计。电位器给出了与机械输入相关的电压变化。电位仪自太空飞行开始以来就使用了,并且相对具有成本效益。它们可从较低的交货时间较低的几家供应商那里获得。但是,机械滑动触点引入了其他机械电阻,并限制了寿命和速度。物理传感范围也可能受到限制,并且在寿命的后期,电输出是嘈杂的。要克服这一限制并补充Ruag的Inhouse产品组合,开始了开发工作。目标是开发一个简单的低成本位置传感器,能够替换或提供有效的电位仪。将非接触式工作原则设定为发展目标。关于成本和空间遗产的重点比解决方案更重视。光学编码器的工作原理适用于不锈钢缝面膜,永久磁铁和霍尔传感器开关的组合。所得的低分辨率非接触传感器已成功原型并在功能上进行了测试。简介
摘要:本文研究了SIC MOSFETS身体二极管反向恢复的行为,这是不同工作条件的函数。对其效果的了解对于基于SIC设备的正确设计和驱动电源转换器至关重要,以优化旨在提高效率的MOSFET通勤。的确,反向恢复是切换瞬态的一部分,但由于其对恢复能量和电荷的影响,它具有重要作用。已正确选择了不同操作条件的集合,以防止或强迫测试设备的快速恢复。实验结果和特定的软件模拟揭示了文献中未知的现象。更具体地说,对反向恢复电荷Q RR的分析显示,在高温下,两种意外现象:随着栅极电压的增加,它会降低;设备阈值越高,Q RR越高。TCAD-SILVACO(ATLASv。5.29.0.c)模拟表明,这是由于换向过程中输出电容电压变化而导致漂移区域流动的位移电流引起的。从对快速恢复的分析中,它已经出现了最小的正向电流斜率,即使在高电流水平上,反向恢复也不是活跃的。达到此电流斜率后,Q RR仅随正流电流而变化。
对锂离子电池中温度和压力的实时监测提供了对几种与热失控相关的几种故障机制的全面洞察力。这些特征是温度升高,会触发热产生的分解过程以及迅速降低电池的易燃气体的释放。这项研究提出了一种新方法,该方法是针对首次设施的高容量21700型元素细胞中内部温度和气压的同时实时监测。这包括评估热失控事件的严重程度。该方法使用具有集成热电偶和压力传感器的定制传感系统。研究了仪器细胞的性能并验证传感器功能后,通过外部加热触发的细胞衰竭进一步研究了热失控特性。结果突出了细胞内部气压的积累,内部细胞温度的升高以及细胞衰竭阶段的细胞电压变化:预处理,软孔和火焰产生。这项研究的基础是制定锂离子电池系统中针对安全危害的早期检测或缓解策略。此外,未衡量数据集的可用性支持创建数学模型,以优化电池性能,安全性和寿命。
人们已经采用了多种方法来辨别人类的情绪,包括分析语音模式和语调( Moriyama 和 Ozawa,2003;Zeng 等人,2009)。然而,值得注意的是,这种身体状态很容易被操纵或模仿( Schuller 和 Schuller,2021)。面部表情及其变化通常用于情绪识别;然而,这些表情可以被个人有意修改,这对准确辨别他们的真实情绪提出了挑战( Aryanmehr 等人,2018; Dzedzickis 等人,2020; Harouni 等人,2022)。 EEG(脑电图)是一种通过测量大脑内集体神经活动产生的电压变化来监测大脑活动的技术(San-Segundo 等人,2019 年;Dehghani 等人,2020 年、2022 年、2023 年;Sadjadi 等人,2021 年;Mosayebi 等人,2022 年)。脑电图是大脑活动和功能的反映,具有多种应用,包括但不限于情绪识别(Dehghani 等人,2011a、b、2013;Ebrahimzadeh 和 Alavi,2013;Nikravan 等人,2016;Soroush 等人,2017、2018a、b、2019a、b、2020;Bagherzadeh 等人,2018;Alom 等人,2019;Ebrahimzadeh 等人,2019a、b、c、2021、2022、2023;Bagheri 和 Power,2020;Karimi 等人,2022;Rehman 等人,2022;Yousefi 等人,2022, 2023 年)。
重量 IP54 - 3.9Kg / IP66 - 5.8Kg IP54 - 6.1Kg / IP66 - 8.5Kg IP54 - 6.7Kg 工作温度 -35 o C 至 +55 o C -35 o C 至 +55 o C -35 o C 至 +55 o C 可选型号 12V/40A, 24V/40A 36V/22A, 48V/20A 12V/80A, 24V/80A 36V/53A, 48V/40A 12V/105A, 24V/105A 36V/80A, 48V/60A 充电电压 14.4V, 28.8V, 43.2V, 57.6V 14.4V, 28.8V, 43.2V, 57.6V 14.4V, 28.8V, 43.2V, 57.6V 建议电池容量 20Ah-500Ah 30Ah-1000Ah 40Ah-1200Ah 输入交流电压 195-264VAC, 47-64Hz 195-264VAC, 47-64Hz 195-264VAC, 47-64Hz 纹波 <1% <1% <1% 可选充电程序 所有铅和锂电池 所有铅和锂电池 所有铅和锂电池 输出电压变化 ±0.5% ±0.5% ±0.5% 电流纹波 ±2% ±2% ±2% IP 等级 IP54 / IP66 IP54 / IP66 IP54 安全等级 I 级 I 级 I 级 电源线 3x1.5mm 2 橡胶线, 1.5m 3x1.5mm 2 橡胶线, 1.5m 3x1.5mm 2 橡胶电缆,1.5m 电池电缆 2x10mm 2 1.5m 2x16mm 2 1.5m 2x25mm 2 1.5m 其它 反极性保护,防短路 反极性保护,防短路 反极性保护,防短路 外壳 铝 铝 铝 CAN 总线 可选 可选 可选
摘要 本研究提出了一种创新技术,基于一种高效的低功耗 VLSI 方法,设计用于信号和图像处理中混频电路应用的 4 位阵列乘法器。建议的架构使用近阈值区域的绝热方法来优化传播延迟和功耗之间的权衡。乘法器是许多数字电子环境中必不可少的组件,因此诞生了许多针对特定应用定制的乘法器类型。与传统 CMOS 技术相比,该技术显著降低了动态和静态功耗。近阈值绝热逻辑 (NTAL) 使用单个时变电源实现,从而简化了时钟树管理并提高了能源效率。使用 Tanner EDA 工具和 Spectre 模拟器在 TSMC 65 nm 技术节点上对建议的设计进行仿真,以确保验证优化结果。与典型的 CMOS 方法相比,在保持相似设计参数的情况下,可变频率、电源电压和负载电容的功耗分别显著改善了约 66.6%、14.4% 和 64.6%。值得注意的是,随着频率变化,负载电容保持恒定在 C load = 10 pF 和 VDD (max) = 1.2 V;随着电源电压变化,负载电容保持恒定在 C load = 10 pF 和频率 F = 4 GHz;随着负载电容变化,频率保持在 F = 4 GHz 和电源电压 VDD (max) = 1.2 V。关键词:- 4 位阵列乘法器、绝热逻辑、低功耗 VLSI、近阈值区域、NTAL 方法、TSMC 65 nm CMOS 技术、混频器电路、信号和图像处理、能源效率、Tanner EDA、Spectre 模拟器和功耗优化。
摘要 本研究开发了用于三维集成电路 (3D-IC) 的背面埋入金属 (BBM) 层技术。该技术在每个芯片背面的大片空白区域引入用于全局电源布线的 BBM 层,并与芯片正面布线并联。电源 (V DD ) 和地 (V SS ) 线的电阻因此而降低。此外,由于 BBM 结构埋入 Si 衬底中并具有金属-绝缘体-硅结构,因此可充当去耦电容。因此,引入 BBM 层可以降低电源传输网络的阻抗。3D-IC 的 BBM 层制造工艺简单,并且与后通孔硅通孔 (TSV) 工艺兼容。利用该工艺可以在 CMOS 芯片(厚度:43 µm)背面埋入由电镀 Cu(厚度:约 10 µm)组成的 BBM 层,并通过直径 9 µm 的 TSV 将 BBM 与芯片正面布线相连。 关键词 三维集成电路(3D-IC),背面埋入金属(BBM)层,硅通孔(TSV),供电网络 I. 引言 采用硅通孔(TSV)的三维集成电路(3D-IC)技术[1]–[5]是生产先进、高速、紧凑和高功能电子系统的有效方法。然而,堆叠多个芯片会导致电路设计的电源完整性问题。例如,由于可用于电源和地线的 TSV 数量有限,3D-IC 中的 IR 压降会增加。此外,在 3D-IC 中同时切换堆叠芯片时,会产生很大的同时切换噪声(di/dt 噪声)。这种同步开关噪声会在电源输送网络 (PDN) 中产生不可预测的电压变化,从而导致系统故障。为了解决这一电源完整性问题,不仅必须在电路板/中介层级降低 PDN 的阻抗,还必须在芯片级降低 PDN 的阻抗,并提高电源输送的可靠性。先前的研究提出了一些降低芯片级 PDN 阻抗的方法。第一种方法是加宽电源线/地线。这种方法非常简单,但由于线路资源有限,难以应用。