09:00 – 09:25 利用电场研究超导量子比特中的缺陷 Jürgen Lisenfeld,卡尔斯鲁厄理工学院 09:25 – 09:50 我们能否进一步减少超导量子振荡器中的耗散和失相? Ioan M. Pop,卡尔斯鲁厄理工学院 09:50 – 10:15 声子阱可降低超导电路中非平衡准粒子的密度 Francesco Valenti,卡尔斯鲁厄理工学院 10:15 – 10:20 参观 PTB 实验室的一些细节 10:20 – 10:50 咖啡休息 10:50 – 11:15 紧凑型 3D 量子存储器的最佳控制 Frank Deppe,加兴理工大学 / 慕尼黑理工大学和 MCQST 大学 11:15 – 11:40 三波混频行波约瑟夫森参量放大器的开发挑战 Christoph Kissling,不伦瑞克 PTB
09:00 – 09:25 利用电场研究超导量子比特中的缺陷 Jürgen Lisenfeld,卡尔斯鲁厄理工学院 09:25 – 09:50 我们能否进一步减少超导量子振荡器中的耗散和失相? Ioan M. Pop,卡尔斯鲁厄理工学院 09:50 – 10:15 声子阱可降低超导电路中非平衡准粒子的密度 Francesco Valenti,卡尔斯鲁厄理工学院 10:15 – 10:20 参观 PTB 实验室的一些细节 10:20 – 10:50 咖啡休息 10:50 – 11:15 紧凑型 3D 量子存储器的最佳控制 Frank Deppe,加兴理工大学 / 慕尼黑理工大学和 MCQST 大学 11:15 – 11:40 三波混频行波约瑟夫森参量放大器的开发挑战 Christoph Kissling,不伦瑞克 PTB
09:00 – 09:25 利用电场研究超导量子比特中的缺陷 Jürgen Lisenfeld,卡尔斯鲁厄理工学院 09:25 – 09:50 我们能否进一步减少超导量子振荡器中的耗散和失相? Ioan M. Pop,卡尔斯鲁厄理工学院 09:50 – 10:15 声子阱可降低超导电路中非平衡准粒子的密度 Francesco Valenti,卡尔斯鲁厄理工学院 10:15 – 10:20 参观 PTB 实验室的一些细节 10:20 – 10:50 咖啡休息 10:50 – 11:15 紧凑型 3D 量子存储器的最佳控制 Frank Deppe,加兴理工大学 / 慕尼黑理工大学和 MCQST 大学 11:15 – 11:40 三波混频行波约瑟夫森参量放大器的开发挑战 Christoph Kissling,不伦瑞克 PTB
09:00 – 09:25 利用电场研究超导量子比特中的缺陷 Jürgen Lisenfeld,卡尔斯鲁厄理工学院 09:25 – 09:50 我们能否进一步减少超导量子振荡器中的耗散和失相? Ioan M. Pop,卡尔斯鲁厄理工学院 09:50 – 10:15 声子阱可降低超导电路中非平衡准粒子的密度 Francesco Valenti,卡尔斯鲁厄理工学院 10:15 – 10:20 参观 PTB 实验室的一些细节 10:20 – 10:50 咖啡休息 10:50 – 11:15 紧凑型 3D 量子存储器的最佳控制 Frank Deppe,加兴理工大学 / 慕尼黑理工大学和 MCQST 大学 11:15 – 11:40 三波混频行波约瑟夫森参量放大器的开发挑战 Christoph Kissling,不伦瑞克 PTB
符合航空航天和国防工业的约束条件。在焊点可靠性研究中,使用有限元分析模拟似乎是一种有前途的解决方案;其结果是维持不断增加的资格测试成本。但是,这种模拟需要焊点所用合金的机械性能。到目前为止,文献中还没有关于机械本构模型、参数或疲劳规律的重要共识。由于这些合金的熔点低,其机械行为很复杂,即使在室温下也能达到可见的粘度域。此外,在这些合金的疲劳分析中不能忽略蠕变疲劳相互作用。因此,很明显,最终应用中的焊点微观结构非常复杂。
3.2.1 方法论 ................................................................................................ 94 3.2.2 实验细节 ................................................................................................ 95 3.2.3 测试载体描述 ........................................................................................ 96 3.2.4 测试载体 1:回流曲线验证的影响 ........................................................ 96 3.2.5 测试载体 2:应变率验证的影响 ............................................................. 98 3.2.6 测试载体 3:CSH 验证的影响 ............................................................. 101 3.2.7 测试载体 4:空洞验证的影响 ............................................................. 104 3.2.8 测试载体 5:ATC 对焊点长期可靠性的影响 ............................................. 106
无铅锡基焊点通常具有单晶粒结构,取向随机,且特性高度各向异性。这些合金通常比铅基焊料更硬,因此在热循环期间会向印刷电路板 (PCB) 传递更多的应力。这可能会导致靠近焊点的 PCB 层压板开裂,从而提高 PCB 的柔韧性,减轻焊点的应变,进而延长焊料疲劳寿命。如果在加速热循环期间发生这种情况,可能会导致高估现场条件下焊点的寿命。在本研究中,使用偏光显微镜研究了连接陶瓷电阻器和 PCB 的 SAC305 焊点的晶粒结构,发现其大多为单晶粒。热循环后,在焊点下的 PCB 中观察到裂纹。这些裂纹很可能是在热循环的早期阶段在焊料损坏之前形成的。为了详细研究这些观察结果,我们开发了一种有限元模型,该模型结合了单晶焊点随温度变化的各向异性热性能和机械性能。该模型能够以合理的精度预测 PCB 和陶瓷电阻焊点中损伤起始的位置。它还表明,即使长度非常小的 PCB 裂纹也可能显著降低焊点中累积的蠕变应变和蠕变功。所提出的模型还能够评估焊料各向异性对陶瓷电阻相邻(相对)焊点损伤演变的影响。