本章中使用的集成电力电子元件 (IPEC) 定义如图 1 所示。IPEC 体现了功率调节的主要功能,包括功率开关半导体、无源电容器和电感器储能元件、带相关电容器的半导体栅极驱动器以及控制器。IPEC 可以作为独立系统组件整体实现,如第 II、III 和 IV 节所述,也可以将其分成多个部分,例如功率开关和控制,在 IP 内实现,而储能则在低成本空间内实现,例如中介层,如第 I 节所述。从第 I 节到第 III 节,对现有电子封装技术和未来发展需求的识别不断建立,尽管封装技术方法之间存在很大的共性,但讨论中的冗余有限。因此,建议读者按顺序从第 I 节移动到第 III 节。第 IV 节是一个不断发展的主题,将在 HIR 的下一次修订中得到扩展,与第 II 节更加一致。此外,第 10 章主要关注 ≤48V/100A 的功率调节。但是,基本技术适用于更高的功率水平。表 1 显示了每个部分所涉及的领域的图形描述。突出显示的“IPEC”如下所述。
电子学是当代科学与工程中发展最快的学科之一。由于对微型化和集成化的不断追求,大多数电子元件都是在所谓的微型尺度上设计和制造的。出于这个原因,专业人士中建立了微电子学这个专业术语。如今,微电子元件是每种工业或家用电子设备不可或缺的一部分。不幸的是,像其他设备一样,微电子元件的使用寿命也是有限的。其可靠性的基本问题之一是连接。在微电子封装[17]中,使用焊接、胶合和键合连接,其中焊点是最重要的[13, 15, 27]。大多数焊点损坏是由于热机械载荷造成的,其直接原因是由于连接材料的热膨胀系数不匹配而产生的应力[17, 35, 40]。据估计,微电子封装中约 65% 的损坏与热机械问题有关 [2, 38]。可靠性被定义为物体在给定环境条件下、在一段规定时间内正常运行的属性。可靠性的数学描述允许在定义的操作条件下评估物体故障的概率。电子封装接头可靠性预测的传统方法之一是基于所谓的双材料界面的理论分析。双材料界面是指两种具有不同热机械性能的材料之间的机械连接。
摘要:影响晶圆级先进封装可靠性的设计参数包括上下焊盘尺寸、焊料体积、缓冲层厚度、芯片厚度等。传统上,采用加速热循环试验(ATCT)来评估电子封装的可靠性寿命,但通过ATCT优化设计参数耗时长、成本高,减少实验次数成为关键问题。近年来,许多研究人员采用基于有限元的仿真设计(DoS)技术进行电子封装可靠性评估。DoS技术可以有效缩短设计周期、降低成本,并有效优化封装结构。然而,仿真分析结果高度依赖于研究人员个体,并且通常彼此不一致。人工智能(AI)可以帮助研究人员避免人为因素的缺点。本研究通过结合人工智能和仿真技术来预测晶圆级封装 (WLP) 可靠性,展示了 AI 辅助 DoS 技术。为了确保可靠性预测准确性,在创建大型 AI 训练数据库之前,通过多次实验验证了模拟程序。本研究研究了几种机器学习模型,包括人工神经网络 (ANN)、循环神经网络 (RNN)、支持向量回归 (SVR)、核岭回归 (KRR)、K 最近邻 (KNN) 和随机森林 (RF)。本研究根据预测准确性和 CPU 时间消耗对这些模型进行了评估。
用于收集生物电信号的柔软且灵活的设备的开发正在为可穿戴和可植入应用获得动力。在这些设备中,有机电化学晶体管 (OECT) 因其低工作电压和大信号放大而脱颖而出,能够转换微弱的生物信号。虽然液体电解质已证明在 OECT 中有效,但它们限制了其工作温度,并且由于潜在的泄漏而对电子封装构成挑战。相反,固体电解质具有机械灵活性、对环境因素的稳健性以及桥接刚性干电子系统和柔软湿润生物组织之间界面的能力等优势。然而,很少有系统表现出与各种最先进的有机混合离子电子导体 (OMIEC) 的通用性和兼容性。本文介绍了一种高拉伸性、柔韧性、生物相容性、自修复性的明胶基固态电解质,该电解质与 p 型和 n 型 OMIEC 通道兼容,同时保持高性能和出色的稳定性。此外,这种非挥发性电解质在高达 120°C 的温度下仍保持稳定,即使在干燥环境中也表现出高离子电导率。此外,还展示了一种基于 OECT 的互补逆变器,其归一化增益创下了 228 V − 1 的最高纪录,相应的静态功耗超低为 1 nW。这些进步为从生物电子学到节能植入物的多种应用铺平了道路。
压阻式硅基应力传感器有可能成为汽车电子中数字孪生实现的一部分。增强数字孪生可靠性的一种解决方案是使用机器学习 (ML)。正在监测一个或多个物理参数,而其他参数则使用替代模型进行投影,就像虚拟传感器一样。压阻应力传感器用于测量电子封装的内部应力,采集单元 (AU) 用于读出传感器数据,Raspberry Pi 用于执行评估。在空气热室中进行加速测试以获取应力传感器信号的时间序列数据,通过这些数据我们可以更好地了解封装内部的分层情况。在本研究中,在分层过程中对多个电子封装进行了应力测量。由于刚度的连续变化和局部边界条件导致应力发生变化,应力传感器检测到分层。虽然多个单元中的应力变化可以提供足够的信息来判断是否分层,但其分层区域位置未知。开发了基于神经网络 (NN) 和有限元法 (FEM) 的替代模型,用于预测分层层的平面外应力。FEM 模拟模型通过莫尔条纹测量进行校准,并通过应力差测量在组件和 PCB 级别进行验证。模拟分层区域
由于服务器和数据中心级别的功率密度不断增加,高性能计算服务器的热管理正成为数据中心冷却行业面临的普遍挑战。高效散热也与电子封装可靠性直接相关。由于水基冷却剂的热性能更高,直接芯片液体冷却等改进的冷却技术可以满足不断增长的冷却需求。使用动态冷却概念,实验研究了一种进一步提高直接液体冷却 (DLC) 效率的方法。开发了一种流量控制装置 (FCD),用于使用陶瓷加热器调节流向四个定制热测试车辆 (TTV) 的流量。TTV 组件被放置在标准 19 英寸信息技术设备 (ITE) 机架的四个不同高度,位于安装有冷板的测试夹具中。每个 TTV 的流量调节是基于每个 TTV 的功耗进行的。每个 TTV 的功耗因整个机架中各种非均匀功率分布值而变化。分析了冷却剂入口温度和流速对 TTV 温度和机架压降的影响。结果表明,TTV 上的温度更加均匀,最大功率时 TTV 上的最高温度降低。还通过将所得结果与已发表的文献进行比较,分析了温度均匀性对封装级可靠性的影响。
• 设备和系统封装基础:技术和应用,第 2 版,Rao Tummala;(可通过 GT 图书馆 [AccessEngineering 数据库] 在线获取) • 将通过期刊和会议论文集补充课程 课程概述:课程概述:在过去 60 年里,单片硅集成电路 (IC) 通过摩尔定律以前所未有的创新速度发展。在这 60 年的大部分时间里,电子封装扮演着“次要角色”——封装是为了实现简单的空间转换和片外互连布线。然而,这种情况已经改变。今天,先进封装和异构集成已经发展成为摩尔定律下一阶段的关键推动因素。人们普遍认为,传统的单片集成已无法同时满足未来电子产品的性能、功率和成本需求,因此,催生了“先进封装”和“异构集成”这两个更为关键的领域。在本课程中,我们将探讨传统封装技术和基于 2.5D 和 3D 集成电路的新兴异构集成架构。本课程将探讨这些重要的新集成技术,并了解一些电气、热和热机械设计注意事项。鉴于当今 IC 设计和技术正在发生革命性的变化,课程材料非常及时且令人兴奋。评分:家庭作业:10%(根据努力程度评分)考试:两次课堂考试,每次 22.5%(总计 45%)项目:书面提案:30%
目标和产品 本指南文件介绍了在高可靠性应用中使用先进塑料球栅阵列 (BGA) 和芯片尺寸 BGA (DSBGA) — 商用现货 (COTS) — 封装技术和组件的建议。最先进和高密度的 BGA 采用倒装芯片球栅阵列 (FCBGA) 配置,输入/输出 (I/O) 超过 2000 个,间距为 1 毫米。间距小于 1 毫米(低至 0.3 毫米)的 DSBGA 通常最多有几百个 I/O。由于更大芯片的产量挑战和节点缩小的高成本,业界已转向实施系统级封装 (SiP)。先进的 SiP 集成芯片技术(称为 Chiplet)是电子封装技术的下一个范式转变。本指南简要讨论了先进的 COTS 封装技术趋势,并提供了两个测试评估示例;一个针对 BGA,另一个针对 DSBGA。对于这两个类别,测试结果涵盖了关键工艺问题、质量指标和质量保证 (QA) 控制参数,随后提供了全面的测试数据以解决热循环可靠性和局限性。最后,报告摘要中包括了从这些评估中吸取的经验教训得出的关键建议。针对低风险灌注航天应用,给出了 COTS BGA/DSBGA 封装技术的具体建议,同时考虑了任务、环境、应用和寿命 (MEAL) 要求。
摘要:为了在电子封装领域引入新的键合方法,进行了理论分析,该分析应提供有关反应多层系统 (rms) 产生足够的局部热量以用于硅片和陶瓷基板之间连接工艺的潜力的大量信息。为此,进行了热 CFD(计算流体动力学)模拟,以模拟 rms 反应期间和之后键合区的温度分布。该热分析考虑了两种不同的配置。第一种配置由硅片组成,该硅片使用包含 rms 和焊料预制件的键合层键合到 LTCC 基板(低温共烧陶瓷)。反应多层的反应传播速度设置为 1 m/s,以便部分熔化硅片下方的焊料预制件。第二种配置仅由 LTCC 基板和 rms 组成,用于研究两种布置的热输出之间的差异。 CFD 模拟分析特别侧重于对温度和液体分数轮廓的解释。进行的 CFD 热模拟分析包含一个熔化/凝固模型,该模型除了模拟潜热的影响外,还可以跟踪焊料的熔融/固态。为了为实验研究的测试基板设计提供信息,模拟了 Pt-100 温度探头在 LTCC 基板上的实际行为,以监测实验中的实际键合。所有模拟均使用 ANSYS Fluent 软件进行。
电子封装领域出现了新的要求。对移动通信和传感器解决方案的需求不断增长,这些解决方案可以解决物联网 (IoT) 问题,这带来了有趣的新挑战。射频应用力求转向更高的频段,扇出技术正被用作解决互连需求的有效方法,并且人们不断寻找更具成本效益的解决方案来应对棘手的封装挑战。玻璃提供了大量机会来满足这些需求。作为绝缘体,玻璃的电损耗低,特别是在高频下。相对较高的刚度和调整热膨胀系数的能力有助于优化玻璃芯基板的翘曲,并利用 TGV 和载体应用管理键合堆栈。玻璃成型工艺允许以面板形式以及厚度低至 100 µ m 的晶圆形式成型,从而有机会优化或消除当前的抛光类型的制造方法,并以经济高效的方式应对封装挑战。随着行业采用玻璃解决方案,下游工艺(如玻璃处理和通孔/表面金属化)取得了重大进展。特别令人感兴趣的是利用面板制造工具集和工艺来实现行业所需的成本结构的能力。我们将提供最新的电气、热和机械性能和可靠性演示,并描述利用玻璃实现下一代产品目标的领域。