过去二十年,科学界不断努力寻求更好的量子资源协方差框架,重点主要放在量子纠缠上。在这项工作中,我们通过分析洛伦兹增强下真正的多体纠缠和量子相干性的行为,将讨论向前推进了一步。具体来说,我们对叠加多体纯态中产生的电子-正电子对问题进行了案例研究。我们的方法与标准处理的不同之处还在于,我们考虑了四动量的所有成分,从而允许检查在这些自由度之间也可以编码纠缠的场景。我们的分析揭示了这个问题中有趣的微妙之处,比如实验室框架中的真正 4 体纠缠在洛伦兹增强框架的视角下转变为真正的 8 体纠缠加上量子相干性。此外,这些量子资源的给定组合被证明会形成洛伦兹不变量。尽管我们的研究结果无法通过第一原理确定信息论洛伦兹不变量,但它们为沿着这条路线进行根本性突破铺平了道路。
航空电子行业已开始从使用单核处理器过渡到使用多核处理器。多核处理器可以提供更高的性能,并有助于最大限度地减少尺寸、重量和功耗 (SWaP)。虽然使用多核处理器可以改善航空电子解决方案的许多方面,但也带来了挑战。例如,内核的增加提供了更多的数据处理,但随着内核数量的增加,干扰路径呈指数级增长。联邦航空管理局 (FAA) 和欧洲航空安全局 (EASA) 要求使用软件和电子硬件开发的机载数字系统获得适航认证。内核和干扰路径的增加使这些系统的认证比使用单核处理器的系统更具挑战性。
小型航天器指挥和数据处理以及飞行软件系统、技术和功能不断发展,为开发和部署下一代小型航天器航空电子设备提供了新的机会。小型航天器首次推出时,其主要目的是观察并将信息发回地球。随着意识和效用的扩大,需要提高在特定任务环境中收集数据的整体能力。小型航天器目前在低地球轨道上执行各种科学研究,并正在成为更强大的超低地球轨道任务的候选者。本文将详细介绍航空电子系统的技术发展、它们满足现代复杂小型航天器任务需求的要求以及更新的航空电子架构组成。作者还将向读者介绍 SmallSat 航空电子设备的当前最新技术,并将分散的航空电子架构与非航空航天应用联系起来,以及它在“数字化管理一切”运动中的基本作用。
AD969-DMA (1908-01) 250.00 237.50 225.00 212.50 AD969-DMAC (1908-04) 290.00 275.00 260.00 245.05.70 (1908) 260.00 245.00 AD969-DTA (1910-01) 275.00 262.50 250.00 237.50 AD969-DW (1912-01) 350.00 3121930 (AD) 3395.00 3395.00 525.00 500.00 475.00 400.00 AD969-ERC (1914-01) 1,050.00 975.00 925.00 875.00 AD969-ETA (1916-01.5) 252.00 AD969-LAB (1917-01) 490.00 490.00 350.00 250.00 AD969-LAH (1918-01) 250.00 225.00 225.00 200.00 AD969-425) 1,425.00 1,425.00 1,425.00 1919-02 1,200.00 1,200.00 1,200.00 1,200.00 1,200.00 1,019-03 1919-04 2,000.00 1,900.00 AD969-TC (1920-01) 2,000.00 1,850.00 1,750.00 1,690,201.00 1,850.00 1,750.00 1,690.00 1920-03 2,000.00 1,850.00 1,750.00 AD969-TG (1921.01) 1,000,000,404.00 1,400.00 1921-02 1,600.00 1,600.00 AD969-TR (1922-01) 2,150.00 2,150-09 2,150.200 AD960。 (1922-03) 2,150.00 2,150.00 2,150.00 2,150.00 AD1000-BC (1927-01) 400.00 400.00 375.00 350.00
Primus Apex 的功能和优势:• 两个主飞行显示器和一个或两个多功能显示器,具有清晰的高分辨率有源矩阵液晶显示器和宽视角,可进行跨驾驶舱扫描。最大限度地提高飞机可用性和调度能力 – 四个显示器,调度时用两个。尽量减少低头 • 集成飞机系统、安全传感器和导航信息,通过增强态势感知减少飞行员工作量并提高安全性 • 使用先进的设计技术和固态传感器提高可靠性,以提高调度能力 • 新兴通信导航监视空中交通管理 (CNS/ATM) 运营和环境要求 • 灵活的架构允许在新技术出现时轻松集成硬件和软件 • 符合所有现行全球法规 • FAA 第 23 部分或第 25 部分认证能力
我们将本期特刊献给了Andrij Shvaika和Oleg derzhko,以庆祝他们的第60个候选人。如照片中所示,Andrij和Oleg一生都是同事,其中一个在小学时期向他们展示,另一个在2019年在LVIV举行的一次会议上向他们展示。Andrij和Oleg在同一研究所工作了数十年,也是《凝聚力物理学》杂志的副编辑。在本期特刊中庆祝他们两个是在努力。所选的贡献涵盖了与两个禧年的主要科学利益密切相关的广泛主题,以承认其对科学的独特和宝贵贡献。我们很高兴感谢所有通过将论文提交本期特刊的作者,所有匿名裁判,他们仔细阅读并进行了建设性地审查了他们的所有匿名裁判,以及在最终阶段关心特殊问题的冷凝物理学物理学。
航空电子系统小组 (ASP) 是 IEEE 航空航天和电子系统协会 (AESS) 的一个技术运营小组。该小组致力于解决民用和军用航空电子系统研究、设计、测试和认证方面的当代问题。重点领域包括:通信;指挥和控制;导航;监视;有人/无人空中交通管理 (ATM) 管理;以及空间系统(运载火箭、航天器和卫星)。ASP 监控、分析和支持与其技术重点相关的行业和政府活动,例如美国国家航空航天局 (NASA) 无人机系统 (UAS) 交通管理 (UTM)、联邦航空管理局 (FAA) 下一代空中交通系统 (NextGen) 计划,以及影响航空业未来的欧盟 (EU) 单一欧洲天空 ATM 研究 (SESAR) 计划。ASP 的高级目标包括:
摘要:半导体二维 (2D) 材料由于其丰富的能带结构和在下一代电子器件中的良好潜力而引起了广泛的研究关注。在本文中,我们研究了具有双栅极 (DG) 结构的 MoS 2 场效应晶体管 (FET),该结构由对称厚度的背栅极 (BG) 和顶栅极 (TG) 电介质组成。通过排除接触影响的四端电测量揭示了 DG-MoS 2 器件中厚度相关的电荷传输,并且还应用了 TCAD 模拟来解释实验数据。我们的结果表明,量子限制效应对 MoS 2 沟道中的电荷传输起着重要作用,因为它将电荷载流子限制在沟道的中心,与单栅极情况相比,这减少了散射并提高了迁移率。此外,温度相关的传输曲线表明,多层 MoS 2 DG-FET 处于声子限制的传输状态,而单层 MoS 2 表现出典型的库仑杂质限制状态。
1 美国伊利诺伊州埃文斯顿西北大学生物集成电子中心。2 美国俄亥俄州立大学材料科学与工程系。3 美国俄亥俄州立大学慢性脑损伤中心。4 韩国水原成均馆大学电气与计算机工程系。5 美国伊利诺伊州埃文斯顿西北大学材料科学与工程系。6 美国伊利诺伊州埃文斯顿西北大学生物医学工程系。7 美国伊利诺伊州埃文斯顿西北大学神经外科系。8 美国伊利诺伊州埃文斯顿西北大学化学系。9 美国伊利诺伊州埃文斯顿西北大学机械工程系。10 美国伊利诺伊州埃文斯顿西北大学电气工程系。11 美国伊利诺伊州埃文斯顿西北大学计算机科学系。 12 美国伊利诺伊州埃文斯顿西北大学范伯格医学院。13 美国伊利诺伊州埃文斯顿西北大学奎里-辛普森生物电子研究所。14 以下作者贡献相同:宋恩明、李菁华、王尚敏、白武斌。✉ 电子邮件:jrogers@northwestern.edu