b'composites,[14 \ xe2 \ x80 \ x9316]聚合物粘合剂,[17 \ xe2 \ x80 \ x9319]和添加剂[19,20],以改善Li-Cells中的Si-Electrode性能。涉及硅阳极中的金属碳化物是尚未探讨增加容量和循环寿命的另一种策略。首先,据报道,具有特定微观结构的复合硅/wolfram碳化物@石墨烯可维持较高的初始库仑效率和长期循环寿命,从而减轻了结构变化。[21]相反,金属碳化物(mo 2 C,Cr 2 C 3等)以Si Cr 3 C 2的形式 @几层石墨烯和Si Mo 2 C @几层石墨烯电极的据报道,具有良好的电化学性能。[22]此外,碳化物通常还可以提供出色的导电骨架,以提高Si的电子电导率,这要归功于纳米导电通道的存在,从而降低了电子转移电阻。[23,24]'
• LiBH 4 和 Al 2 O 3 • LiI 和 Al 2 O 3 • AgI 和 Al 2 O 3 • AgBr 和 Al 2 O 3 • CuBr 和 Al 2 O 3 • CuBr 和 TiO 2 • Li 7 La 3 Zr 2 O 12 和锂硼硅酸盐玻璃
摘要:使用基于范德华校正的密度功能理论(Rev-VDW-DF2函数),使用使用机器学习的原子质势模拟了温度诱导的相变和离子电导率。阶 - 疾病相变的模拟温度,晶格参数,扩散,离子电导率和激活能与实验数据非常吻合。我们对Li 2 B 12 H 12的模拟发现了[B 12 H 12] 2-阴离子的重新定位运动的重要性。在有序的α-相(t <625 K)中,这些阴离子具有明确的方向,而在无序的β-相(t> 625 K)中,它们的方向是随机的。在空缺系统中,观察到其完整的旋转,而在理想的晶体中,阴离子显示有限的vabrational运动,表明没有动态无序的相位过渡的静态性质。使用机器学习间的原子势使我们能够以长(纳秒尺度)分子动力学研究大型系统(> 2000个原子),从头开始质量。关键字:密度功能理论,机器学习间原子潜能,固体电解质,相变,离子电导率
抽象的城市河流流过城市是公民休闲和放松的地方。但是,这些河流有时被大肠杆菌(大肠杆菌)污染。因此,这项研究的目的是开发一种简单的方法来研究河水中的大肠杆菌污染。从2019年5月到2019年10月,从日本科比市的Toga河的五个位置收集了水样,并测量了粪便大肠菌密度(FCD),以及电导率和河水的氯离子浓度。这些水质参数与实际粪便密度的比较表明,电导率与FCD之间存在很高的相关性。,而FCD和氯化物浓度之间几乎没有相关性。接收器工作特性(ROC)分析用于评估使用电导率作为估计参数的方法。曲线下的面积(AUC)用作ROC曲线算法性能的度量。计算出的AUC值在宽范围的FCD值中保持较高,高于0.95,这表明这种快速监测方法适用于评估高于300/100 mL的污染物粪便的数量。
TEM 是研究电子设备纳米级特征的重要工具。TEM 基于散射的对比度在确定材料的物理结构方面表现出色,并且通过 EDS 和 EELS 等光谱附件可以精确确定设备中原子的组成和排列。结合原位功能,TEM 可以精确映射设备在运行和缺陷形成过程中的物理结构变化。但是,在许多情况下,设备的功能或故障是小规模电子变化的结果,这些变化在变化成为病态之前不会呈现为可检测的物理信号。为了在 TEM 中检测这些电子变化,必须采用与电子结构直接相关的对比度的互补成像。在 TEM 中获得电子对比度的一项技术是电子束感应电流 (EBIC) 成像,其中由光束在样品中产生的电流在 STEM 中逐像素映射。自 20 世纪 60 年代以来 [1],EBIC 电流产生的“标准”模式是在局部电场中分离电子-空穴对 (EHP)。最近,展示了一种新的 EBIC 模式,其中电流由束流诱导二次电子 (SE) 发射在样品中产生的空穴产生[2]。这种 SE 发射 EBIC (SEEBIC) 模式不需要局部电场的存在,通常比标准 EBIC 的电流小得多,并且能够实现更高分辨率的成像[3]。在基于 TEM 的技术中,SEEBIC 独一无二,还能产生与样品中局部电导率直接相关的对比度[4],即使在操作设备中也是如此[5]。在这里,我们讨论了 STEM EBIC 电导率映射技术,并提供了它在被动成像和原位实验中的几个应用示例。图 1 显示了 SEEBIC 电阻映射的简单演示。该设备由一条 GeSbTe(GST)条带组成,该条带横跨两个在薄 SiN 膜上图案化的 TiN 电极。图 1 中的 STEM EBIC 图像包含标准 EBIC 和 SEEBIC 对比度。如图所示,当电子束入射到 TiN/GST 界面时,肖特基势垒处的电场将 EHP 分开,空穴在每个界面处朝 GST 移动,在连接到 EBIC 放大器的右侧电极上产生暗对比度,在接地的左侧电极上也产生暗对比度。在这些界面之外,SEEBIC 对比度与左侧(接地)电极的电阻成正比 [4]。靠近 EBIC 电极(即,与接地电极相比,EBIC 电极的电阻更小)的 SE 发射产生的空穴更有可能通过该电极到达地,从而产生更亮的(空穴)电流。 SEEBIC 在右侧(EBIC)电极上最亮,由于非晶态GST的电阻率均匀,SEEBIC 在整个GST条带上稳定减小,在左侧电极上最暗[6]。
非共线反铁磁体 (AFM) 是一个令人兴奋的新平台,可用于研究本征自旋霍尔效应 (SHE),这种现象源于材料的能带结构、贝里相位曲率和对外部电场的线性响应。与传统的 SHE 材料相比,非共线反铁磁体的对称性分析不禁止具有 ̂ x、̂ z 极化的非零纵向和平面外自旋电流,并预测电流方向为磁晶格的各向异性。本文报道了在非共线状态下唯一生成的 L1 2 有序反铁磁 PtMn 3 薄膜中的多组分平面外自旋霍尔电导率 𝝈 x xz 、𝝈 y xz 、𝝈 z xz。最大自旋扭矩效率 (𝝃 = JS / J e ≈ 0.3) 明显高于 Pt (𝝃 ≈ 0.1)。此外,非共线状态下的自旋霍尔电导率表现出预测的取向相关各向异性,为具有可选自旋极化的新设备开辟了可能性。这项工作展示了通过磁晶格进行对称性控制作为磁电子系统中定制功能的途径。
寿命和富裕电子设备和组件的性能受到大量热积聚的影响,并且必须通过热导电聚合物复合膜解决此问题。因此,对高热导率纳米复合材料的发展的需求在各种应用中具有重要作用。在本文中,审查了各种聚合物的导热率的不同粒子增强剂,例如单一和杂化形式,涂层和未涂层的颗粒以及化学处理的颗粒,并讨论了所需特性改进的各种聚合物的热电导率。此外,还详细介绍了制造过程(例如注射成型,压缩成型和3D打印技术)在高温电导率聚合物复合材料中的作用。最后,讨论了未来研究的潜力,这可以帮助研究人员致力于增强聚合物材料的热性能。
自1955年以来,Swift Textile Metalizing为航空航天,国防和商业应用提供了标准和定制的导电织物。STM汇集了技术,创新工程和客户参与,以提供动态的应用程序解决方案。STM的目标是通过产品性能和服务的最高标准不断提高我们的行业领导力。STM的目标是通过产品性能和服务的最高标准不断提高我们的行业领导力。
在这项工作中,我们研究了固有的SI 0.06 GE 0.94 /gE塑料放松的异质结构的有效背景电荷密度(001)。hall效应测量和电容 - 电压填充显示在名义上固有的层中具有p型电导率,在10 15 cm 3中间的孔浓度在50至200 k的温度下,孔的浓度为孔。此外,通过深层瞬态光谱法发现位于中间隙位置的一个主要孔陷阱。载体捕获动力学测量值可以解释为由于点缺陷的组合,可能被困在扩展缺陷的应变场中,即螺纹脱位。