摘要 — 我们报告了使用两种缓冲层用于毫米波应用的超薄(亚 10 nm 势垒厚度)AlN/GaN 异质结构的比较结果:1) 碳掺杂 GaN 高电子迁移率晶体管 (HEMT) 和 2) 双异质结构场效应晶体管 (DHFET)。观察到碳掺杂 HEMT 结构表现出优异的电气特性,最大漏极电流密度 I d 为 1.5 A/mm,外部跨导 G m 为 500 mS/mm,最大振荡频率 f max 为 242 GHz,同时使用 120 nm 的栅极长度。C 掺杂结构在高偏压下提供高频性能和出色的电子限制,可在 40 GHz 下实现最先进的输出功率密度(P OUT = 7 W/mm)和功率附加效率 (PAE) 组合,在脉冲模式下高达 V DS = 25V 时高于 52%。
(1) 电气特性表值仅适用于所示温度下的工厂测试条件。因子测试条件导致器件自热非常有限,例如 TJ=TA。在 TJ>TA 的内部自热条件下,电气表中不保证参数性能。绝对最大额定值表示结温极限,超过该极限,器件可能会永久退化,无论是机械还是电气。(2) 极限由 25 摄氏度下的测试、设计或统计分析确保。工作温度范围内的极限通过使用统计质量控制 (SQC) 方法的相关性来确保。(3) 典型值表示在特性确定时确定的最可能的参数标准。实际典型值可能随时间而变化,也取决于应用和配置。典型值未经测试,不保证在出厂生产材料上有效。(4) 有效分辨率是转换器满量程范围与 RMS 测量噪声之比。(5) 未连接外部电容。5.6 I 2 C 接口电压电平
双向电源良好 (PG) 输出和关断 (*SD) 输入引脚。要从外部禁用 FBS-GAM01P-R-PSE(将 OUT 引脚强制为低 (OFF) 状态),应将 SD/PG 引脚连接到逻辑地,例如通过开漏/集电极。该模块还包含一个电源良好 (PG) 感应电路,当 +5 V DC 栅极驱动偏置电位 (V BIAS ) 低于“PG 功能静态电气特性”表(见第 4 页)中指定的欠压阈值范围时,该电路将禁用驱动器。在 V BIAS 电位低于预设阈值期间,PG 输出(引脚 5)引脚通过开漏拉低(至 LGND)。或者,当 V BIAS 电位高于预设阈值时,PG 引脚通过外部上拉电阻拉高至 V DRV 。为了正常运行,应使用 4.7 kΩ 电阻将引脚 9 外部上拉至 V DRV (引脚 3)。
摘要:物联网 (IoT) 的快速发展带动了低功耗传感器的开发。然而,物联网扩展的最大挑战是传感器的能量依赖性。为物联网传感器节点提供电源自主性的一个有前途的解决方案是从环境源收集能量 (EH) 并将其转换为电能。通过 3D 打印,可以创建单片收集器。这降低了成本,因为它消除了对后续组装工具的需求。得益于计算机辅助设计 (CAD),收集器可以根据应用的环境条件进行专门调整。在这项工作中,设计、制造并电气表征了压电谐振能量收集器。还进行了压电材料和最终谐振器的物理表征。此外,还使用有限元建模对该设备进行了研究和优化。在电气特性方面,确定该设备在最佳负载阻抗为 4 M Ω 且受到 1 G 加速度时可实现 1.46 mW 的最大输出功率。最后,设计并制造了一个概念验证设备,目的是测量流过电线的电流。
许多软机器人组件需要高度可拉伸的导电材料才能正常运行。这些导电材料通常用作传感器或热响应材料的加热器。然而,可拉伸材料很少,它们可以承受软机器人通常经历的高应变,同时保持焦耳加热所需的电气特性(例如,均匀的电导率)。在这项工作中,我们提出了一种含有液体和固体夹杂物的硅树脂复合材料,它可以在经历 200% 的线性应变时保持均匀的电导率。这种复合材料可以铸造成薄片,使其能够包裹在热响应软材料周围,这些软材料在加热时会增加体积或可拉伸性。我们展示了这种材料如何为电控形状变化的软机器人致动器以及仅由电刺激驱动的全硅树脂致动系统开辟可能性。此外,我们还表明这种可拉伸复合材料可用作其他应用中的电极材料,包括线性响应高达 200% 应变且信号噪声接近于零的应变传感器。
研究了功率 AlGaN/GaN HEMT 系列的击穿失效机制。这些器件采用市售的 MMIC/RF 技术与半绝缘 SiC 衬底制造。在 425 K 下进行 10 分钟热退火后,对晶体管进行了随温度变化的电气特性测量。发现没有场板的器件的击穿性能下降,负温度系数为 0.113 V/K。还发现击穿电压是栅极长度的减函数。在漏极电压应力测试期间,栅极电流与漏极电流同时增加。这表明从栅极到 2-DEG 区域的直接漏电流路径的可能性很大。漏电流是由原生和生成的陷阱/缺陷主导的栅极隧穿以及从栅极注入到沟道的热电子共同造成的。带场板的器件击穿电压从 40 V(无场板)提高到 138 V,负温度系数更低。对于场板长度为 1.6 l m 的器件,温度系数为 0.065 V/K。2011 Elsevier Ltd. 保留所有权利。
我们对基于 Al x Ga 1 x N 量子阱通道的 AlN/AlGaN/AlN 高电子迁移率晶体管 (HEMT) 的电气特性进行了成分依赖性研究,其中 x ¼ 0.25、0.44 和 0.58。这种超宽带隙异质结构是下一代射频和电力电子器件的候选材料。使用选择性再生长的 n 型 GaN 欧姆接触会导致接触电阻随通道中 Al 含量的增加而增加。DC HEMT 器件特性表明,对于 x ¼ 0.25、0.44 和 0.58,最大漏极电流密度分别从 280 mA/mm 逐渐降低到 30 mA/mm 再到 1.7 mA/mm。与此同时,这三个 HEMT 的阈值电压 (幅度) 同时从 5.2 V 降低到 4.9 V 再到 2.4 V。这一关于 Al 组分 x 对晶体管特性影响的系统实验研究为在 AlN 上设计用于高电压和高温极端电子器件的 AlGaN 通道 HEMT 提供了宝贵的见解。
电子产品的辐射敏感性一直是探测瞬态或时间累积现象中的电气特性。随着电子芯片或系统的尺寸和复杂性增加,检测最脆弱的区域变得更加耗时和具有挑战性。在这项研究中,我们假设局部机械应力如果与电气敏感区域重叠,会使电子设备更容易受到辐射。因此,我们开发了一种间接技术来映射机械和电气热点,以识别运算放大器 AD844 对电离辐射的辐射敏感区域。使用脉冲热相分析通过锁定热成像测量机械敏感性,并使用电偏置来识别电气相关区域。构建了电气和机械敏感性的综合评分,作为电离辐射敏感性的指标。与文献相比,实验结果表明新技术在快速检测辐射脆弱区域方面是有效的。这些发现对于较大的系统可能很有吸引力,因为传统的分析需要多花两到三个数量级的时间才能完成。然而,该技术的间接性质使研究更加近似,需要更多的一致性和验证工作。
页码 概述................................................................................ 3 SCSI 背景 ...................................................................... 4 结构图.............................................................................. 5 引脚说明.............................................................................. 4.1 微处理器接口信号 ........................................................ 6 4.2 SCSl 接口信号 ................................................................ 8 电气特性............................................................................. 9 内部寄存器............................................................................. 6.0 概述............................................................................. 10 6.1 数据寄存器.................................................................................. .................................................................. .................................................................. .................................................................. .................................................................. .................................................................. .................................................................. .................................................................. .................................................................. .................................................................. .................................................................. 10 6.1.1 当前 SCSI 数据寄存器.................. ... 10 6.1.3 输入数据寄存器 ...................................................... 11 6.2 发起者命令寄存器 ...................................................... 11 6.3 模式寄存器 .............................................................. 13 6.4 目标命令寄存器 ...................................................... 14 6.5 当前 SCSI 总线状态寄存器 ............................................. 15 6.6 选择启用寄存器 ..“ ................ ” ...................................... 15 6.7 总线和状态寄存器 ...................................................... 15 6.8 DMA 寄存器 ............................................................. 16 6.8.1 启动 DMA 发送 ............................................................. 16 6.8.2 启动 DMA 目标接收 ............................................................. 17 6.8.3 启动 DMA 发起者接收 ............................................................. 17 6.9 复位奇偶校验 / 中断 ............................................................. 17 片上 SCSI 硬件支持 ............................................................. 18 中断 ............................................................................. . 8.1 选择/重新选择 ................................................................ 19 8.2 处理结束(EOP)中断 ...................................................... 20 8.3 SCSI 总线复位 .............................................................. 21 8.4 奇偶校验错误 ................................................................ 21 8.5 总线相位不匹配 ................................................................ 22 8.6 BSY 丢失 ...................................................................... 22
电载体及其高热分率[8]和机械功能使石墨烯高度用途。结合钻石和石墨烯的显着性在于具有最好的两者的可能性:钻石的绝缘和热散热性能以及墨料的出色电气特性。钻石表现出165 MeV的高光音子能量。[9]此属性对于钻石上的石墨烯设备可能至关重要,因为石墨烯层中的载流子迁移率通常受到源自底物的光学声子散射的限制。高光学声子能量意味着在RT处很少有光学声子,导致低散射速率。与常规的SIO 2 /Si和SIC相比,DIAMOND作为底物的其他好处包括其具有较低陷阱密度的化学惰性表面。作为钻石上石墨烯设备的底物,由于其可伸缩性可能性和较低的缺陷密度,化学蒸气沉积(CVD)钻石优于高压高温(HPHT)。[10]石墨烯和钻石的非凡特性引起了人们对将这些材料集成到电子和量子应用中的兴趣。[11]
