摘要:使用X射线衍射(ZNONP)和合成的ZnO/精氨酸/酪氨酸/酪氨酸纳米复合材料(ZAT)的合成合成的ZnO纳米粒子(ZnONPS)(ZAT),使用X射线衍射(XRD),傅立叶衍射(XRD),傅立叶变换(FTIR)光谱(FTIR)光谱,扫描电子显微镜(SEM),EDRAREN MICROSCOPY(SEM),RECTER(SEM),RESCERES(SEM),RESCERIVES(SEMREX),RESCERIVES(SEMREX)群集(启用元件盒零件盒零件盒)荧光(XRF),动态光散射(DLS)和Brunauer-Emmett-Teller(BET)分析。使用电位动力学极化(PDP),电化学阻抗光谱(EIS),重量分析和原子吸收光谱(AAS)研究了ZnONP和ZAT在1 M HCl中的腐蚀抑制疗效。XRD分析表明,Znonps和Zat是晶体的,平均结晶石尺寸分别等于28.57 nm和32.65 nm。从DLS分析中发现,ZnONP和ZAT的流体动力大小分别为34.99 d.nm和36.57 d.nm。XRF确认Znonps的合成和证实的XRD,FTIR和EDX结果。PDP分析表明,Znonps和Zat显示出混合型抑制剂倾向。 腐蚀电流密度(ICORR)在存在ZnONP和ZAT的情况下降低,在每个抑制剂的1000 ppm存在下,抑制效率分别为92.4%和98.5%。 电荷转移电阻值在存在抑制剂的情况下降低,这表明在碳钢表面形成保护膜。 电化学分析结果与重量法和AAS分析结果一致。PDP分析表明,Znonps和Zat显示出混合型抑制剂倾向。腐蚀电流密度(ICORR)在存在ZnONP和ZAT的情况下降低,在每个抑制剂的1000 ppm存在下,抑制效率分别为92.4%和98.5%。电荷转移电阻值在存在抑制剂的情况下降低,这表明在碳钢表面形成保护膜。电化学分析结果与重量法和AAS分析结果一致。
摘要:电铸层厚度不均匀性是制约电铸微金属器件发展的瓶颈问题。微齿轮是各类微器件的关键元件,本文提出了一种提高其厚度均匀性的新制备方法。通过仿真分析研究了光刻胶厚度对均匀性的影响,结果表明随着光刻胶厚度的增加,电流密度的边缘效应减小,电铸齿轮的厚度不均匀性会减小。与传统的一步正面光刻和电铸方法不同,该方法采用多步自对准光刻和电铸工艺制备微齿轮结构,在交替光刻和电铸过程中间歇地保持光刻胶厚度的降低。实验结果表明,该方法制备的微齿轮厚度均匀性比传统方法提高了45.7%。同时,齿轮结构中部区域的粗糙度降低了17.4%。
组件[3,4],但是SI光源的发展远远落后于其他组件[5-8]。组IV材料的间接带隙性质使它们效率低下,因为它们是泵送的发光来源[9],而III – V QD激光器在直接在SI底物上生长的III – V QD激光器对实现高效率和低成本显示出希望。由于自组装QD的三维量子限制,INAS/GAAS QD激光器,这些激光器以低阈值电流密度[4、10-12]呈现出较高的性能[4、10-12],并且对基于SI的PICS的温度和缺陷高度耐受性[13]受到了极大的关注[14-20]。然而,由于载体对较高状态和/或屏障状态的热激发,QD激光器的性能不足理论理想[21-24]。尽管电荷中立性可能
摘要 — 电迁移 (EM) 一直被认为是后端互连的可靠性威胁因素。自旋转移力矩磁性 RAM (STT-MRAM) 是一种新兴的非易失性存储器,近年来备受关注。然而,相对较大的工作电流幅度是这项技术的一大挑战,因此,EM 可能是一个潜在的可靠性问题,即使对于这种存储器的信号线也是如此。工作负载感知的 EM 建模需要捕获存储器信号线中随时间变化的电流密度,并能够预测 EM 现象对互连整个生命周期的影响。在这项工作中,我们提出了一些方法,可以在各种实际工作负载下有效地模拟典型 STT-MRAM 阵列中与工作负载相关的 EM 引起的平均故障时间 (MTTF)。这允许执行设计空间探索以共同优化可靠性和其他设计指标。
图 3. 微生物全细胞生物电子装置的电化学分析。使用 (a) 裸 ITO 玻璃和 (b) PEDOT:PSS/PHEA 涂层工作电极对生物和非生物电化学反应器进行计时电流测量。插图显示非生物电流密度。反应器接种了 S. oneidensis 以进行生物测量,虚线标记。非生物测量包含培养基。电化学反应器的工作电极平衡在 +0.2 V vs Ag/AgCl,并使用 20 mM 乳酸作为 S. oneidensis 的碳源。在 43 小时的计时电流实验后,在 (c) 裸 ITO 玻璃和 (d) PEDOT:PSS/PHEA 涂层电极上对生物和非生物样品的循环伏安图(扫描速率:10 mV s -1)。
在本研究中,通过用 1-十二硫醇 (DT) 改性钙钛矿薄膜表面,然后将预分散的 MoS 2 薄纳米片滴铸,获得了高效、耐弯曲的柔性钙钛矿太阳能电池。我们的结果表明,界面改性后柔性器件的效率有所提高,并表明 DT 和 MoS 2 改性器件在 300 次弯曲循环后完全恢复其初始 PCE 和 FF、电流密度和开路电压值,而标准器件的 PCE 仅为其 PCE 的 50%。按照未封装器件的标准光循环协议,结果显示标准器件的 PCE 明显下降至其最大值的 32%,而改性器件可恢复其最高 PCE 值的 95%。不同的表征方法表明表面改性方法会诱导疏水性并显着降低界面陷阱密度。
继第 1 版《新兴光伏 (PV) 报告》发布后,该报告总结了自 2020 年 8 月以来学术期刊上的同行评审文章中所报道的新兴光伏器件在各种新兴光伏研究课题中性能的最佳成就。提供了更新的图表、表格和分析,其中包含多个性能参数,例如功率转换效率、开路电压、短路电流密度、填充因子、光利用效率和稳定性测试能量产量。这些参数表示为每种技术和应用的光伏带隙能量和平均可见光透射率的函数,并使用详细的平衡效率极限等进行透视。第 2 版《新兴光伏报告》将范围扩大到串联太阳能电池,并介绍了当前各种材料组合的串联太阳能电池性能的最新进展。
工程。哌嗪功能组进入由三个[pbbr 6] 4-八面体包含的空间,将pb-br-pb推向靠近直线(最大pb-br-pb角〜180°),抑制倾斜度以及电子量子coupling。同时,乙基位于层之间,并贡献了极大的有效层间距离(2.22Å),从而进一步促进了载体的运输。结果,EPZPBBR 4同时证明了高μτ产物(1.8×10 -3 cm 2 V -1)和较大的电阻率(2.17×10 10Ωcm)。组装的X射线检测器在相同的偏置电压下达到1.02×10 -10 A CM -2的低黑暗电流,高灵敏度为1240μCGy-1 cm -2。实现的特异性检测(噪声电流密度的比率为1.23×108μcGy-1 cm -1 a -1 a -1/2)是所有报道的钙钛矿X射线检测器中最高的。
I.引言已经开发了许多用于沉积高质量YBCO薄膜[1]的技术[1],例如真空蒸发,激光消融,化学蒸气沉积,磁控溅射[2,3]等对高温超导膜沉积的发展和理解在很大程度上有助于在低温电信设备中应用,例如低通滤波器,延迟线和微波通信的天线,并生产在数字电路和鱿鱼中有用的Josephson连接。所有技术和应用都将取决于大型薄膜廉价生产的成功。尤其是越野膜的生长,多层人士仍然是一个非常复杂的事情。由于存在几种固有的物质问题,例如短相干长度,各向异性,低临界电流密度和化学计量学,因此该过程变得复杂。同样,在薄膜中,元素从底物扩散到膜到膜以及相邻层是多层结构中的另一个问题。
摘要:这项研究探索了钙钛矿太阳能电池的性能,包括MASNI3,CH3NH3SNI3,CSPBI3和CSSNGEI3,分析关键指标,例如效率,敞开电路电压(VOC),短路电流电流密度(JSC)和填充因子(JSC)和填充因子(ff)。使用SCAPS软件的模拟提供了基线数据,并使用高级计算技术对其进行了进一步验证和扩展。灵敏度分析揭示了诸如带隙能量和载体迁移率之类的参数的影响,而层优化和电路模型则提供了对增强设备性能的见解。比较分析和现实世界模拟弥合了实验室结果与实际应用之间的差距,并得到了机器学习模型的支持,以预测新型材料的效率。这种全面的方法有助于优化钙钛矿太阳能电池以进行未来的应用。