有效 RIDERS 表日期 部分服务 24 01-01-09 摘要 80 06-01-24 住宅配电抵免 81 05-21-10 替代能源资源 84 01-01-25 学校配电抵免 85 06-01-09 商业配电抵免 86 01-23-09 医院净能量计量 87 10-27-09 普遍服务 90 01-01-24 税收节省调整 91 01-01-25 州千瓦时税 92 01-23-09 净能量计量 94 10-27-09 三角洲收入恢复 96 01-01-25 合理安排 98 06-01-09 配电无法收回 99 01-01-25 经济负荷响应计划 101 06-01-24 发电成本核算 103 01-01-25 先进计量基础设施/现代电网 106 01-01-25 PIPP 无法收回 109 01-01-25 非配电无法收回 110 01-01-25 实验性实时定价 111 06-01-24 实验性临界峰值定价 113 06-01-24 发电服务 114 06-01-24 需求侧管理和能源效率 115 06-01-24 经济发展 116 01-01-25 非市场化服务 119 10-01-24 住宅电热回收 122 01-01-25 住宅发电信贷 123 10-31-18 交付资本回收 124 01-01-25 逐步实施恢复 125 01-01-25 自动电表退出 128 09-01-20 商业高负荷率实验性 TOU 130 06-01-24 保护支持附加条款 133 09-01-21 县集市和农业协会 134 01-01-25 传统发电资源 135 01-01-25 太阳能发电基金 136 01-01-25 消费者费率抵免 137 01-01-25 能源效率成本恢复 138 06-01-24 风暴成本恢复 139 06-01-24 植被管理成本恢复 140 08-01-24
生产协议James A.举行的Jim Hold Consulting LLC Sun Prairie,WI简介水产养殖者正在考虑为农场饲养的角膜白斑产品提供两个具有经济意义的市场。首先,对高级指鱼尺寸的需求不断增长(> 6英寸)用于增强资源的角膜白斑导致商品规模的价格为0.25 - 0.30 /英寸或更高。第二,人们对本地养殖的食物鱼的兴趣不断增长,这促使基于更快的杂种角膜白斑(Walleye雌性X Sauger雄性)的生产策略的制定。这两个市场机会都可以融合RAS(再循环水产养殖系统)技术。在行业投资和扩张可以进行之前,应分析生产策略的经济生存能力。目的是开发灵活的经济模型,这些模型可用于确定角膜白斑和杂种鱼类生产的生产成本,以及用于库存和杂种角膜鱼类作为食物鱼的角膜白斑的成本。经济模型用户应首先下载与此叙述有关的四个Excel电子表格。仅读取文档,打开模型。虽然四个模型中的每一个都有特定的应用程序和端点,但它们以相似的方式起作用。阴影浅绿色的单元格用于用户输入。深绿色的细胞需要用户注意来调整加热成本并选择气体或电热(见下文)。输入两者的数据将导致盈亏平衡的成本膨胀。未阴影的单元格是计算值,不应更改。以其基本形式的模型根据我们的生产数据和成本注入了价值。用户被邀请检查我们的价值观并将其调整为他们的经验或期望。输入变量的变化将导致模型计算得出的收支平衡成本(黄色阴影单元)的变化。Excel电子表格已锁定,以便它们返回
电动汽车 (EV) 有潜力降低交通运输部门的碳排放,并为实现全球净零排放目标做出贡献。然而,为了实现可持续的脱碳,电动汽车的电网到车辆 (G2V) 运行所需的电力应来自无碳或低碳发电源。虽然人们已经广泛探索了可再生能源 (RES) 在电动汽车 G2V 过程中的采用,但热电联产 (CHP) 技术仍未得到充分研究。因此,本文部署了协调的天然气和燃料电池热电联产技术以及 RES 和电池储能系统 (BESS),以促进电动汽车的 G2V 和车辆到电网 (V2G) 运行。虽然 BESS 支持 V2G 运行并储存来自 CHP 和 RES 的多余电力,但 CHP 的副产品热量可用于家庭和工业设施的供暖。此外,为了最大限度地提高环境和经济效益,CHP 技术采用混合电热负荷策略设计,使系统能够在遵循电负荷策略和遵循热负荷策略之间自主切换。使用三个不同的案例研究 (CS) 测试了所提出的优化问题,以在随机框架内最小化微电网 (MG) 的运营成本和二氧化碳 (CO 2 ) 排放量,同时考虑 RES 发电、负荷消耗和 EV 充电/放电周期的行为模式作为不确定参数。第一个 CS 仅使用 CHP 技术测试所提出的算法。其次,使用 CHP 技术和 RES 检查该算法。最后,添加 BESS 以支持和分析电动汽车的 V2G 运行对 MG 的影响。此外,还研究了生命周期评估以分析分布式发电的二氧化碳排放量。结果显示,第一、第二和第三个 CS 的运营成本分别降低了 32.22%、44.49% 和 47.20%。同时,各相应 CS 的 CO 2 排放量分别下降了 29.13%、47.13% 和 47.90%。这些结果证明了将热电联产与可再生能源相结合以促进 G2V 和 V2G 运营以实现运输部门脱碳的经济和环境效益。
总统小约瑟夫·R·拜登 白宫 华盛顿特区 尊敬的总统先生, 虽然网络和物理系统曾经截然不同,但现在它们已经深深交织在一起。这些信息物理系统是支撑我们生活的关键服务的核心——我们的水、电、银行、通信、空中交通,也许还有你的家庭供暖系统或冰箱等等。信息物理系统越来越容易受到民族国家、恐怖组织、犯罪分子、一系列自然灾害以及事故和故障的威胁。弱势群体和服务不足的人群可能会最强烈地感受到这些中断的后果。 例如,考虑一下 2021 年冬天德克萨斯州的电力危机。虽然这主要是由于极寒导致的物理系统故障导致电热电力需求意外增加,但整个系统(包括其网络元素)缺乏弹性,导致了这场灾难,导致 450 多万户家庭在零度以下的气温下断电,社区面临水、暖气和食物短缺。 1 事后研究发现,该州的电网几乎发生一连串故障,这些故障可能会损坏设备并导致该州电网停电数周至数月。2 再比如,殖民输油管道计费系统遭受勒索软件攻击,导致原本正常运行的系统长时间关闭,造成东海岸各城市汽油和航空燃料短缺。3 我们必须继续确保有效的网络防御,同时承认我们无法使所有基础设施免受所有威胁或危害。相反,我们必须使我们的网络物理基础设施具有弹性。增强关键基础设施的弹性需要公共和私营部门建立更深层次的合作伙伴关系,以集中注意力并进行更深入的投资。您的政府在这方面取得了巨大进展。国家网络安全总监办公室 (ONCD) 已将一项大胆战略付诸行动。4 国家安全委员会 (NSC) 采取重要措施增强关键基础设施的弹性。国土安全部网络安全和基础设施安全局 (DHS/CISA) 和国家安全局 (NSA) 正在激励国家改善网络安全。私营部门做出了更大的承诺,在产品和服务的安全性和弹性方面进行了创新,
摘要 宽带隙器件正日益渗透到汽车市场,并成为汽车应用(无论是牵引逆变器还是电池充电器)的首选。牵引逆变器的任务概况特别艰巨,因为当电机驱动器经历驱动周期的各个阶段(包括加速、减速、失速等)时,功率器件上的电热应力在幅度和频率上会发生很大变化。从历史上看,牵引转换器一直使用硅器件实现,其性能和可靠性众所周知。在汽车应用中应用 SiC MOSFET 和 GaN 功率器件等 WBG 器件需要了解可靠性和认证程序,尤其是根据汽车标准。与硅器件相比,SiC 和 GaN 功率器件具有不同的内部物理特性和工作模式,其稳健性和可靠性性能也大不相同。鉴于应用的敏感性,这些器件必须通过汽车电子委员会 (AEC)、联合电子设备工程委员会 (JEDEC-JC70) 和欧洲电力电子中心 (AQG) 制定的严格汽车可靠性测试和指南。本教程旨在介绍与以下内容相关的主题:(i)WBG 器件的物理和操作:这包括这些 WBG 器件与传统硅 IGBT 和 MOSFET 的不同之处的详细信息;(ii)WBG 器件的可靠性和稳健性:这包括这些 WBG 技术的哪些方面使它们比传统硅器件更稳健或更不稳健的详细信息。(iii)特定于应用的可靠性要求:这包括如何将应用程序的任务概况转化为功率器件上的应力的详细信息。这一点至关重要,因为与牵引变流器或负载服务直流/直流转换器中的设备相比,电动充电器中使用的设备将受到非常不同的电热和热机械应力。(iv)测试方法和规范:这包括用于实施这些测试的电路和系统的详细信息。讨论将包括标准生产线终端生产测试、筛选测试和资格测试之间的差异。由于这些 WBG 设备的性质,其中一些测试方法必须适应 WBG 设备物理的特殊性。
nogy,纳米材料必须通过不受任何影响其特性的快速和可扩展过程来综合。为了应对这一挑战,我们和其他人最近报道了Graphene的合成,[1-3],以及混合相的MOS 2和WS 2,[4]高渗透合金NPS,[5,6] Nanodiamond,[7],[7]和其他纳米酸盐和其他纳米型使用电热闪光灯闪光灯焦耳热热效应。在电气放电期间产生的强烈黑体辐射后,石墨烯产品称为“闪光石墨烯”。闪光焦耳加热允许非晶碳的转化,包括诸如碎石橡胶轮胎等废物,[8]来自塑料回收的灰烬副产品,[9]或垃圾填充级混合塑料废物,[10] [10]到石墨烯晶体中。此外,闪光石墨烯晶体是涡轮形成的,并且沿C轴表现出不同程度的层到层的不良方向。[1]这种涡轮质石墨烯构成纳米结构依赖性的物质,包括表面活性剂溶液中的增强溶解度[1]和改变的带结构。[11]焦耳加热过程的可扩展性和环境友好性,以及合成产品的涡轮质性质,使Flash Joule加热一种有趣的合成技术,可带来进一步的研究和分析。尽管Flash Joule加热具有巨大的实用性,但本质上很难研究。闪光石墨烯的形式过程仅在数百毫秒内发生。这些波动很难通过实验控制,这使得它在传统的网格搜索中对映射过程 - 结构 - 专业关系的关系充满挑战。例如,Tang等。更重要的是,当前的闪光灯加热反应器在当前的放电轮廓上不提供控制,从而向每种反应增加了随机元素,这取决于电路向样本接触的瞬时波动。由于这些因素,在闪光灯加热过程中驱动大量纳米晶体形成的参数仍然模棱两可。同时,新兴的文献体系表明机器学习(ML)是材料科学基础研究的强大工具。[12–18]虽然ML经典地考虑了一种用于预防过程故障的工业工具,但使用ML询问大型参数空间可以在低时期内对新技术产生见解。使用ML探索过程 - 结构 - 专业关系 - 管理良好理解过程的船只,例如化学蒸气沉积和量子点综合,并根据其结果争论,ML将使研究人员能够研究
主要活动和职责 以下学科的研讨会和实验室教学活动:电子器件、基础电子电路、微电子软件工具、计算机辅助设计技术 集成电路领域的研究活动: 1. I. Cimpian、OG Profirescu、A. Ungureanu、F. Babarada、E. Lakatos、C. Amza、MOSFET 模拟-TCAD 工具/包、CAS 2003 国际半导体会议论文集、Vol. 2,页235-238,10月2003; 2. F. Babarada、E. Lakatos、MD Profirescu、C. Amza、E. Manea、N. Dumbravescu 和 OG Profirescu,MOSFET 工艺优化和特性提取,CAS 2004 年国际半导体会议论文集,第 3 卷。 2,页319-322,10月2004; 3. OG Profirescu、F. Babarada、MD Profirescu、C. Ravariu、E. Manea、N. Dumbravescu、C. Dunare 和U. Dumitru,《MOSFET 电导建模(包括失真分析方面)》,CAS 2005 国际半导体会议论文集,第 3 卷。 2,页439-442, 2005; 4. F. Babarada,MD Profirescu,C. Ravariu,A. Rusu,OG Profirescu,E. Manea,C. Dunare,《MOSFET 失真分析建模》,ICMNT'06,阿尔及利亚,2006 年; 5. F. Babarada, C. Maxim, C. Ravariu, I. Campian, OG Profirescu, MD Profirescu, E. Manea, N. Dumbravescu 和 C. Dunare, 微电子交互式远程学习, ICL'06, 菲拉赫 - 奥地利, 2006 年; 6. F. Babarada、MD Profirescu、C. Ravariu、OG Profirescu、E. Manea、N. Dumbravescu、C. Dunare 和V. Dumitru,《MOSFET 建模(包括失真分析的二阶效应)》,ASM 06,Rhodes-Greece,2006 年; 7. C. Amza、I Cimpian、MD Profirescu、OG Profirescu,《伪晶 HEMT 结构的集合蒙特卡罗模拟》,《CAS 2007 国际半导体会议论文集》,锡纳亚 - 罗马尼亚,第 15 卷。 2,页419-422, 2007; 8. V. Moleavin、MD Profirescu、OG Profirescu,《数字 IC 的电热仿真环境》,《CAS 2007 国际半导体会议论文集》,罗马尼亚锡纳亚,第 15 卷。 2,页493-496, 2007; 9. OG Profirescu、C. Dinca、C. Stanescu,《CMOS LDO 中的噪声》,CAS 2007 国际半导体会议论文集,IEEE 目录号。 07TH8934,页563-566,十月2007; 10. V.Moleavin、OG Profirescu、MD Profirescu,《数字集成电路的功能热模拟模型》,罗马尼亚科学院院刊,A 系列,第 15 卷。 9号1,页69-74, 2008;
Alfa Laval 和 Build to Zero 合作开发了一项开创性的长时储能 (LDES) 解决方案,用于减少工业二氧化碳排放。传热技术的全球领导者 Alfa Laval 和电热储能 (ETES) 技术开发商 Build to Zero 在战略合作方面迈出了重要一步。该合作伙伴关系刚刚启动了创新型直流热交换器的制造,该交换器旨在产生中压清洁蒸汽。这项尖端的蒸汽发生器技术将集成到 Build to Zero 专有的 ThermalBox® 解决方案中,旨在实现工业热过程脱碳。2022 年,热能占全球能源消耗的 50% 和二氧化碳 (CO2) 排放量的 38%(来源:IEA)。仅工业过程就贡献了全球近 20% 的二氧化碳排放量,其中大部分来自锅炉中化石燃料的燃烧。工业热能脱碳对于实现净零排放至关重要,是一项重大的技术挑战。 “根据 COP28 到 2030 年将可再生能源增加三倍的承诺,长时储能对于加速向可再生能源的过渡起着关键作用。与 Build to Zero 的合作标志着我们在脱碳和更可持续的未来道路上迈出了良好的一步”,Alfa Laval 能源部门总裁兼执行副总裁 Thomas Møller 表示。“我们与 Alfa Laval 的合作标志着我们加速工业脱碳使命的一个重要里程碑。通过将 Build to Zero 的创新 ThermalBox® 技术与 Alfa Laval 的尖端热交换器专业知识相结合,我们正在为能源转型中最严峻的挑战之一创造强大的解决方案:工业热脱碳”,Build to Zero 董事长 Joaquín Coronado 表示。Build to Zero 的 ThermalBox® 是旨在应对这一挑战的领先 ETES 解决方案之一。该公司最近获得了欧洲创新委员会 (EIC) 的混合资金,以扩大其 ThermalBox® 脱碳技术。阿法拉伐对此次合作的贡献包括生产直流蒸汽发生器,这代表了熔盐和水热交换器技术的突破。作为同类产品中的首款产品,这款蒸汽发生器将部署在 Dekitra,Dekitra 是一家专门生产和商业化用于整体水循环、造纸、洗涤剂和农用化学品行业的化学溶液的化学品制造商。通过此次合作,阿法拉伐和 Build to Zero 旨在加速向可持续工业流程的过渡,帮助各行业在保持运营效率的同时大幅减少碳足迹。
碳化硅 (SiC) 是一种宽带隙 (WBG) 半导体材料,与硅 (Si) 相比,它具有多种优势,例如最大电场更高、导通电阻更低、开关速度更快、最大允许结工作温度更高。在 1.2 kV - 1.7 kV 电压范围内,SiC 功率器件有望取代 Si 绝缘栅双极晶体管 (IGBT),用于高效率、高工作温度和/或减小体积的应用。特别是,SiC 金属氧化物半导体场效应晶体管 (MOSFET) - 电压控制且常关断 - 是首选器件,因为它易于在使用 Si IGBT 的设计中实现。在这项工作中,研究了 SiC 器件的可靠性,特别是 SiC MOSFET 的可靠性。首先,研究了并联两个分立 SiC MOSFET 的可能性,并通过静态和动态测试进行了验证。发现并联连接没有问题。其次,通过长期测试研究了 SiC MOSFET 体二极管的阈值电压和正向电压的漂移。还发现这些可靠性方面没有问题。第三,通过对标准模块的寄生电感建模以及这些电感对栅极氧化物的影响,讨论了封装对芯片可靠性的影响。该模型显示了杂散电感和寄生元件的不平衡,这对高速开关来说是个问题。对湿度对封装在同一标准封装中的 SiC MOSFET 芯片和 SiC 肖特基芯片结端的影响进行的长期测试表明,一些位于户外的模块会过早退化。然后,通过实验和模拟研究了三种不同类型的 1.2 kV SiC 开关器件(双极结型晶体管、结型场效应晶体管和 MOSFET)的短路行为。对每个器件进行详细的电热分析,以支持在故障期间快速关闭器件的必要性。得出了坚固、快速的短路保护设计指南。对于每个器件,都设计、构建了一个短路保护驱动器,并通过实验进行了验证。研究了使用 SiC MOSFET 设计无二极管转换器的可能性,重点是通过体二极管进行浪涌电流测试。发现的故障机制是 npn 寄生双极晶体管的触发。最后,进行了生命周期成本分析 (LCCA),结果表明在现有的 IGBT 设计中引入 SiC MOSFET 具有经济意义。事实上,由于效率更高,初期投资在后期可以节省。此外,可靠性也得到了提高,从风险管理的角度来看,这是有益的。虽然初始转换器成本高出 30%,但采用 SiC MOSFET 的转换器在 20 年内的总投资大约低 30%。关键词:碳化硅、金属氧化物半导体场效应晶体管 (MOSFET)、结型场效应晶体管 (JFET)、双极结型晶体管 (BJT)、可靠性、故障分析、可靠性测试、短路电流、湿度、谐振转换器、串联谐振转换器 (SLR)、基极驱动电路、栅极驱动电路、生命周期成本分析 (LCCA)。
课程注释原子吸收光谱法(AAS)。该方法的基本面。使用火焰雾化。设备。辐射源。火焰和燃烧器。分析,灵敏度,主要问题和干扰的表现。AAS使用电热雾化(石墨室)。分析的性能。石墨室内蒸发机制。应用AAS用于分析不同类型的样品的分析。电感耦合等离子体光学发射光谱法(ICP-OES)。ICP-OES,主要特征和应用领域的基本面。原子/离子排放,定性和定量分析的起源。电感耦合等离子体作为激发源。设备,光谱仪类型,分析性能,主要优势和缺点。干扰。样品制备。其他激励来源。电感耦合等离子体质谱法(ICP-MS)。ICP-MS,设备和光谱仪类型的基本面。血浆作为离子源的作用。ICP-MS的灵敏度。主要优势和缺点,干扰。 分析的性能和对不同类型样本的应用。 原子荧光光谱法(AFS)。 AFS的基本原理,主要特征。 设备,主要优势和缺点。 分子光谱。 光谱法的基本原理,主要。 基本概念。 分子的电子结构。ICP-MS的灵敏度。主要优势和缺点,干扰。分析的性能和对不同类型样本的应用。原子荧光光谱法(AFS)。AFS的基本原理,主要特征。设备,主要优势和缺点。分子光谱。光谱法的基本原理,主要。基本概念。分子的电子结构。分子的电子结构。能量水平,能量转变和相应的光谱电子吸收光谱。有机化合物的紫外光谱,其结构,从光谱获得的信息。溶剂,结合和结构变化对吸收带的强度和位置的影响。紫外光谱。吸收带,其性质。实际应用。定量分析。振动光谱。方法的原理。分子键的振荡,其数学描述。红外光谱。近,远,主要的红外辐射区。对红外光谱的解释。影响吸收峰的位置,宽度,强度的因素。样品制备,设备和记录技术。拉曼光谱法。该方法的本质,是研究的对象。从拉曼光谱获得的信息。表面增强的拉曼光谱。质谱法。技术和原理。获得分子离子的方法。 分裂规则和机制,来自质谱的信息。 质谱与色谱法的组合。 不同分析方法的组合。 阅读清单1。 J. Nolte,ICP发射光谱法;实用指南,威利,2003年。 2。 L. Ebdon,E.H。 Evans,A。Fisher,S.J。 Hill,《分析原子光谱概论》,Wiley,1998年。 3。 4。 S.M.获得分子离子的方法。分裂规则和机制,来自质谱的信息。质谱与色谱法的组合。不同分析方法的组合。阅读清单1。J. Nolte,ICP发射光谱法;实用指南,威利,2003年。 2。 L. Ebdon,E.H。 Evans,A。Fisher,S.J。 Hill,《分析原子光谱概论》,Wiley,1998年。 3。 4。 S.M.J. Nolte,ICP发射光谱法;实用指南,威利,2003年。2。L. Ebdon,E.H。 Evans,A。Fisher,S.J。 Hill,《分析原子光谱概论》,Wiley,1998年。 3。 4。 S.M.L. Ebdon,E.H。 Evans,A。Fisher,S.J。Hill,《分析原子光谱概论》,Wiley,1998年。3。4。S.M.S.M.J. A.C. Broekaert,带有火焰和等离子体的分析光谱,Wiley,2002。NELMS,ICP质谱手册,Blackwell Publishing,2005年。5。L.H.J. Lajunen,P。Peramaki,《原子吸收和排放的光谱化学分析》,第二版,皇家化学学会,2004年。 6。 H. Hesse,A。Meyer,A。Zeeh,有机化学中的光谱方法,Thieme,1997年。 7。 R. M. Silverstein,F.X。 Webster,有机化合物的光谱鉴定,Willey,1997 8。 P. Atkins,J。DePaula,“ Atkin的物理化学”,2006年。 9。 D.Mickevičius„CheminėsAnalizėsMetodai”,1 Tomas。,1998 10。 R.Kellner,J.M. Mermet,M。Otto,H.H。 widmer,分析化学,1998L.H.J.Lajunen,P。Peramaki,《原子吸收和排放的光谱化学分析》,第二版,皇家化学学会,2004年。6。H. Hesse,A。Meyer,A。Zeeh,有机化学中的光谱方法,Thieme,1997年。7。R. M. Silverstein,F.X。 Webster,有机化合物的光谱鉴定,Willey,1997 8。 P. Atkins,J。DePaula,“ Atkin的物理化学”,2006年。 9。 D.Mickevičius„CheminėsAnalizėsMetodai”,1 Tomas。,1998 10。 R.Kellner,J.M. Mermet,M。Otto,H.H。 widmer,分析化学,1998R. M. Silverstein,F.X。Webster,有机化合物的光谱鉴定,Willey,1997 8。P. Atkins,J。DePaula,“ Atkin的物理化学”,2006年。9。D.Mickevičius„CheminėsAnalizėsMetodai”,1 Tomas。,1998 10。R.Kellner,J.M.Mermet,M。Otto,H.H。widmer,分析化学,1998