量子场是物理世界的基本组成部分,它描述所有能量尺度上的物质量子多体系统以及电磁辐射和引力辐射。量子场工程实现了前所未有的测量灵敏度,典型案例是利用压缩光将激光干涉引力波天文台 (LIGO) 的本底噪声降低到散粒噪声极限以下 [1]。在连续变量 (CV) 量子场(又称量子模(代替离散变量 (DV) 量子位))中对量子信息进行编码,已经实现了数百万个量子模上的多体纠缠。这种规模在任何量子位架构中都是无与伦比的,它为量子计算、量子通信和量子传感定义了新的视野和范式。基于量子模式的纳米光子集成设备有可能超越基于量子比特的噪声中型量子 (NISQ) [ 2 ] 计算设备的性能,从而定义未来的量子技术。量子模式的自然实现是使用量子光,这也适用于传感 [ 3 – 6 ] 和通信。
1.1 简介 遥感 (RS),也称为地球观测,是指利用电磁辐射(光)获取有关地球表面物体或区域的信息,而无需直接接触该物体或区域。所以,遥感是人们的日常工作。阅读报纸、观察前面行驶的汽车、在课程中观察讲师讲课都是遥感活动。人眼记录这些物体反射的太阳光,大脑解读颜色、灰色调和强度变化。接下来,这些数据被转换成有用的信息。然而,人眼只能看到整个电磁波谱的一小部分,即大约 400 到 700 nm。在遥感中,各种工具和设备被用于使 400 到 700 nm 范围之外的电磁辐射对人眼可见,尤其是近红外、中红外、热红外和微波。遥感越来越多地用于获取有关环境过程的信息,如农作物生长、土地覆盖变化、森林砍伐、植被动态、水质动态、城市发展等。在本章中,我们简要概述了遥感的历史并总结了遥感的基本概念。1.2 遥感的早期阶段(直到 2000 年左右)1859 年,加斯帕德·图尔纳雄 (Gaspard Tournachon) 乘坐气球拍摄了一张巴黎附近一个小村庄的斜视图。从这张照片开始,地球观测和遥感时代就已开启。很快,世界各地的人们便纷纷效仿。美国内战期间,气球航空摄影在揭示弗吉尼亚防御阵地方面发挥了重要作用。同样,美国内战期间的其他科学技术发展也加速了摄影、镜头和空中应用这项技术的发展。尽管遥感的太空时代在南北战争之后还很遥远,但早在 1891 年,德国就已授予成功设计的带成像系统的火箭专利,专利名称为:“用于获取地球鸟瞰照片的新型或改进型设备”。该设计包括一个由降落伞回收的火箭推进式摄像系统。表 1.1 显示了遥感发展中的几个重要日期。下一个快速发展时期发生在欧洲,而不是美国。第一次世界大战期间,飞机被大规模用于照片侦察。事实证明,飞机是比气球更可靠、更稳定的地球观测平台。在第一次世界大战和第二次世界大战之间,民用航空照片开始使用。当时,航空照片的应用领域包括地质、林业、农业和制图。这些发展导致了相机的改进,电影和解说设备。航空摄影最重要的发展
国际兼职教授 Fumihiko Nishio 教授,fnishio@faculty.chiba-u.jp(遥感基础研究领域:雪和冰),日本千叶大学环境遥感中心 (CEReS)。Josaphat Tetuko Sri Sumantyo 教授,jtetukoss@faculty.chiba-u.jp(遥感基础研究领域:微波遥感),日本千叶大学环境遥感中心 (CEReS)。Prof. Dr.-Ing.Axel Hunger,axel.hunger@uni-due.de(自适应电子学习、自适应教学系统、电子课程及其应用、在线课程的教学分析),德国杜伊斯堡埃森大学。Koichi Ito 教授(印刷天线、小型天线、天线的医疗应用、人体与电磁辐射相互影响评估),日本千叶大学。Masaaki Nagatsu 教授,tmnagat@ipc.shizuoka.ac.jp,(等离子体科学与技术)电子研究所,静冈大学 Michiharu Tabe 教授,tabe.michiharu@shizuoka.ac.jp,(纳米器件)电子研究所,静冈大学 Hiroshi Inokawa 教授, inokawa06@rie.shizuoka.ac.jp,(纳米器件),静冈大学电子研究所 Hidenori Mimura 教授,mimura.hidenori@shizuoka.ac.jp,(真空电子器件)静冈大学电子研究所
摘要 — 旁道攻击利用非主要通道泄露的信息(例如功耗、电磁辐射或时间)从加密设备中提取敏感数据。在过去的三十年中,旁道分析已经发展成为一个成熟的研究领域,拥有成熟的方法来分析高级加密标准 (AES) 等标准加密算法。然而,旁道分析与形式化方法的结合仍然相对未被探索。在本文中,我们提出了一种将旁道分析与 SAT 相结合的 AES 混合攻击。我们将 AES 建模为 SAT 问题,并利用通过基于深度学习的功率分析提取的 S 盒输入和输出值的提示来解决它。在 ATXmega128D4 MCU 实现的 AES-128 上的实验结果表明,SAT 辅助方法可以在一小时内从与用于分析的设备不同的设备捕获的单个跟踪中一致地恢复完整的加密密钥。相比之下,如果没有 SAT 的协助,经过 26 小时的关键普查后,成功率仍然低于 80%。
高压传输对于电力系统中的有效能量传输至关重要,依赖于变压器和气体绝缘开关设备(GIS)等关键组件。检测部分放电(PD)对于防止绝缘失败并确保系统可靠性至关重要。这项研究通过使用超高频率(UHF)传感器来解决敏感的,无创的检测,解决了传统的PD检测方法的局限性,这些局限性通常是侵入性和嘈杂的。主要目标是使用UHF传感器在高压设备中研究部分放电,确定实验室环境中的绝缘缺陷并分析PD信号。HVAC测试以复制PD事件,并使用使用UHF天线测量电磁辐射。研究结果表明,UHF传感器有效地捕获了与PD相关的电磁信号,从而具有较高的灵敏度和准确性。这种非侵入性方法通过实现隔热缺陷的早期检测,从而提高了高压设备的可靠性和寿命,从而改善了维护和操作策略,从而获得了更一致的动力传递。
碎片。月亮的天然卫星,它绕着行星绕着一个大的热气体绕着核融合并发出电磁辐射。太阳在太阳系小行星中心的星星绕着不符合行星标准太阳系的阳光的物体太阳系是一个中央恒星,由行星外球星绕的太阳系外的行星绕着我们的太阳系外,它绕着星星旋转着星形星系,这是一个重力的星星群体,恒星,气体和尘埃云云。宇宙由许多由空白空间隔开的星系组成。请注意,您在空间上并不失重。ISS高度的重力场强度约为。8.7 N Kg -1。 当您不断掉下来时,您会感到失重,没有反应力将您推动。 宇航员在长途旅行上失去骨密度,必须运动(但不要举重!) 为防止这种情况,例如划船机,电阻带。8.7 N Kg -1。当您不断掉下来时,您会感到失重,没有反应力将您推动。宇航员在长途旅行上失去骨密度,必须运动(但不要举重!)为防止这种情况,例如划船机,电阻带。
在过去的几十年中,汽车应用对电子系统的强劲需求以及半导体技术工艺的不断发展,推动了专用集成电路 (ASIC) 的设计和制造,包括模拟、数字、电源和射频模块,这些模块在大幅降低生产成本的同时,还提高了系统性能和可靠性。基本上,满足模块级规范的设计问题已经逐渐从印刷电路板 (PCB) 转移到集成电路,因此当前的 IC 设计(尤其是定制 IC)大多是为了满足大多数模块级规范,包括那些涉及电磁兼容性的规范。实际上,电子模块传导和辐射电磁发射的最大限值不能轻易与 IC 级的电气参数相关联,例如直流电流消耗、时钟频率、IC 封装物理尺寸、I/O 电压和电流斜率等。同样,施加到电子模块以检查其对电磁干扰 (EMI) 的敏感性的射频干扰水平不能像任何其他设计规范那样对待。一般来说,IC 的电磁辐射和电磁敏感性与其所处的周围环境密切相关,即 PCB 布局、EMI 滤波器、PCB 接地方案、金属外壳的大小和形状等。然而,在过去的几十年里,一些
得益于过去 20 年量子信息科学 (QIS) 的快速发展,潜在的 QIS 应用数量急剧增加,包括量子计算和量子信息处理、量子密码和量子传感。这些应用的物理平台种类也在稳步增加。大多数量子信息载体基于特定频率的电磁辐射,因此不同平台之间的直接接口极具挑战性,甚至不可能实现 [1,2]。这重新引起了人们对解决不同平台之间本地和远程互连问题的兴趣 [3,4]。高效的频率转换器能够改变量子态的频率而不会引起退相干,因此提供了一种理想的解决方案。已经提出并实现了几个这样的系统 [5,6],其中许多依赖于非线性光学材料,并且通常需要波导或腔体来实现足够的非线性 [7,8]。热原子或冷原子中的非线性过程是一种很有前途的替代方案,因为原子共振附近的非线性相互作用得到了强烈的增强。Rb 或 Cs 原子中的双梯形(或菱形)方案对于频率转换特别有吸引力 [9-11]。鉴于碱金属原子已成为
摘要:返回中风产生的电磁辐射领域从回流中的流动和动量传递到外太空。由于与垂直返回冲程相关的方位角对称性(圆柱形对称性),辐射场传输的动量仅具有垂直或Z分量。在本文中,研究了返回中风辐射的能量,动量和峰值功率,这是返回冲程电流的函数,返回冲程速度和辐射场的零跨时间。通过数值模拟获得的能量,垂直动量和闪电返回辐射辐射的峰功率获得的结果(所有通过将它们除以100 km处的辐射场峰的平方来归一化的参数)如下:典型的第一个返回率会产生50 µs的辐射量的范围,该频率将在50 µs中散发出频率。 (1.7–2.5)×10 3 j /(v / m)2和轨道垂直动量大约(2.3-3.1)×10-6 kg m / s /(v / m)2。零跨时间为70 µs的辐射场将消散大约(2.6-3.4)×10 3 J /(v / m)2 In Fiferd射线范围的能量,(3.2-4.3)×10-6×10 - 6 kg m / s / s / s /(v / m)
背景 临床网络危机是由于医疗设备故障而导致的患者紧急情况。1 在过去的二十年里,新医疗技术以指数级的速度发展——从植入式心脏装置到可以监测血糖的手机应用程序。虽然有大量研究强调新设备的好处,但较少关注设备故障对患者的影响。最重要的是,我们缺乏针对因植入式设备故障而面临危机治疗患者的临床医生的教育和研究材料。植入式医疗设备的性能可能以多种方式受到影响,例如恶意或非恶意黑客攻击导致的硬件或软件故障;或者由于环境中的电磁辐射 (EM) 影响连接功能而中断。2–6 Rahim- pour 等人的研究发现,深部脑刺激器 (DBS) 的性能可能会受到常见家用电器(包括吹风机和安全门)的电磁辐射的影响。 6 此外,网络安全研究人员已经证明了植入式医疗设备的安全局限性,如果被利用,可能会对患者造成严重后果。3 7 8 现有的遥测设备黑客攻击案例研究包括使用射频发射器绕过胰岛素泵的安全性,这可能会给患者带来致命的影响。9