摘要 — 低温 CMOS 电路因其在量子计算、磁共振成像、粒子探测器和太空任务等领域的潜在应用而备受关注。这些电路在低于 77 K 直至接近绝对零度的温度下工作,由于深低温下可用的冷却功率有限,因此面临严格的功率限制。虽然低温操作可以大幅减少漏电流并提高晶体管效率,但优化低温 CMOS 电路以在冷却限制内最小化静态和动态功耗至关重要。在本文中,我们提出了一种低温感知技术映射方法来优化低温 CMOS 电路的功率特性。所提出的方法以技术独立的逻辑网络和低温标准单元库作为输入,并生成技术映射的门级网表,从而显着降低功耗。通过考虑低温下的静态和动态功率限制,与最先进的低温非感知算法相比,该方法可实现高达 26.89% 的平均功耗降低。这种优化使得基于大规模标准单元的数字电路能够在关键应用中的低温下高效运行。
Tail light accent, head light accent, mirror heaters, seat heaters, dashboard lighting, light touch sensors, phone charging station, speakers, back up camera, heated camera lens, brake assembly, brake controls, control switches), daytime running lights, door handle touch sensors, motor controls, rear view mirror camera display, steering column controls, after market lighting products, EV–battery monitoring and heating, large format circuits, and much更多…
学科选修课 – II EE 619 - 混合信号 VLSI 设计(3-0-2-4) EE 621 - 微波集成电路(3-0-0-3) EE 523 - 数字 VLSI 架构(3-0-0-3) CS 541P - 物联网系统和云(1-0-3-3) EE 516 - 生物医学系统(2.5-1.5-0-4) CS 507 - 计算机架构(4-0-0-4) EE 592 – 形式验证选定主题
氧化是将晶圆上的硅转化为二氧化硅的过程。硅和氧的化学反应在室温下就开始了,但在形成非常薄的天然氧化膜后停止。为了获得有效的氧化速率,晶圆必须在高温下放入有氧气或水蒸气的炉子中。二氧化硅层用作高质量绝缘体或离子注入的掩模。硅形成高质量二氧化硅的能力是硅仍然是 IC 制造中的主要材料的重要原因。氧化技术 1. 将清洁的晶圆放置在晶圆装载站中,然后将干氮 (N2) 引入腔室。当炉子达到所需温度时,氮气可防止发生氧化。