本文描述并回顾了解决人机界面挑战的研究和潜在解决方案,使单个操作员能够通过一个界面控制多架无人机 (UAV)。作为一个系统,这也被称为多机器人系统 (MRS)。MRS 应用于多个领域,如环境监测 [1]、搜索和救援 [2, 3]、安全 [4]、机器人配送的监督控制以及探索性医疗保健中的微型和纳米机器人群 [5]。单个操作员同时控制多个机器人的优势(称为一对多关系)是改善资源分配、时间成本、稳健性和现实世界任务的其他方面 [6]。然而,由于单个操作员的认知工作量增加,增加机器人数量并不一定会提高系统性能 [7]。早期模型描述了单个操作员使用基于忽视容忍度的扇出控制的机器人数量、当操作员忽视机器人时机器人的效率如何随时间下降,以及交互时间、任务切换、建立上下文、计划和将计划传达给机器人所需的时间 [8]。该模型已扩展到包括等待时间和性能指标,以模拟给定任务约束的扇出水平 [9]。
摘要。在许多应用中引起了硅化的形成,尤其是在微电子中的接触形成和互连。在此主题上发表了一些评论,本章的目的是通过重点关注新的实验结果来提供这些评论的更新。本章在理解主要机制(扩散/反应,成核,横向生长…)方面给出了一些进展(即在4至50 nm之间)。提出了有关硅质形成机制的最新实验结果,并将其与模型和/或模拟进行比较,以提取与反应性扩散相关的物理参数。这些机制包括成核,横向生长,扩散/界面控制生长以及扩散屏障的作用。几种技术的组合(包括原位技术(XRD,XRR,XPS,DSC)和高分辨率技术(APT和TEM)被证明是必不可少的,这对于在薄膜中的固态反应中获得了理解,并更好地控制这些反应以在微电机设备或其他应用程序中接触或其他应用。
增强现实 (AR) 是一种计算机图形技术,可在现实世界和虚拟世界之间创建无缝界面。AR 的使用迅速扩展到医疗保健、教育和娱乐等不同领域。尽管 AR 潜力巨大,但其界面控制依赖于外部操纵杆、智能手机或易受光线影响的固定摄像头系统。本文介绍了一种集成 AR 的软性可穿戴电子系统,该系统可检测受试者的手势,从而更直观、准确、直接地控制外部系统。具体来说,这种软性一体式可穿戴设备包括可扩展电极阵列和集成无线系统,用于测量肌电图,从而实时连续识别手势。系统中嵌入的先进机器学习算法能够对十种不同的类别进行分类,准确率高达 96.08%。与传统的刚性可穿戴设备相比,由于皮肤贴合性,多通道软性可穿戴系统在多次使用时可提供更高的信噪比和一致性。用于无人机控制的 AR 集成软可穿戴系统的演示抓住了平台技术的潜力,为用户提供大量人机界面机会,实现与外部硬件和软件的远程交互。
摘要 用户机界面将从用户测量的生物信号映射到外部设备的控制命令。从生物信号到设备输入的映射由解码算法执行。用户和解码器的适应——共同适应——为提高不同用户和应用程序的界面包容性和可用性提供了机会。用户学习可实现强大的界面控制,可跨环境和上下文进行推广。解码器适应可以个性化界面,考虑日常信号变化并提高整体性能。因此,共同适应创造了塑造用户和解码器系统的机会,以实现强大且可推广的个性化界面。然而,共同适应会创建一个双学习者系统,用户和解码器之间具有动态交互。设计共同适应界面需要新的工具和框架来分析和设计用户解码器交互。在本文中,我们回顾了用户机界面中的自适应解码、用户学习和共同适应,主要是用于运动控制的脑机、肌电和运动学界面。然后,我们讨论了共同适应接口的性能标准,并提出了一种设计用户-解码器共同适应的博弈论方法。
展示人工智能 (AI) 能力的挑战之一是找到有效的方式来以切实的方式展示其能力。在本文中,我们使用 Unitree A1 四足机器人展示了一个基于视觉的 AI 演示器。该演示器旨在供苏黎世应用科技大学人工智能中心 (CAI) 使用,以在现实环境中展示 AI 的能力,例如展览。为了实现这一点,我们开发了一个应用程序,允许机器人响应四种特定的手势。该软件从机器人的集成摄像头接收实时图像,并利用 MediaPipe 框架进行手部跟踪和界标点生成,这些界标点实时显示在远程 PC 上。我们根据 3768 个手势记录训练的逻辑回归模型随后会检测站在机器人前面的用户做出的手势。该模型与机器人的系统进行通信,允许通过用户界面控制其检测和姿势。在我们的实验室测试中,机器人展示了每个手势的平均准确率为 91%。然而,我们发现在强光或弱光环境中,机器人的性能不太可靠,准确率仅为 70%。为了提高机器人在这些条件下的性能,我们建议实施额外的算法或微调 MediaPipe 管道。总的来说,我们的演示器为 CAI 部门提供了一个展示 AI 的宝贵工具,因为它允许观众使用直观的手势与机器人互动,并通过观察机器人的即时反应来亲身体验 AI。
1. 引导 引导是启动计算机的过程,操作系统启动计算机工作。它检查计算机并使其做好工作准备。 2. 内存管理 这也是操作系统的一项重要功能。没有操作系统,内存就无法管理。不同的程序和数据同时在内存中执行。如果没有操作系统,程序可能会相互混合。系统将无法正常工作。 3. 加载和执行 程序在执行前必须加载到内存中。操作系统提供轻松将程序加载到内存中然后执行的功能。 4. 数据安全 数据是计算机系统的重要组成部分。操作系统保护存储在计算机上的数据免遭非法使用、修改或删除。 5. 磁盘管理 操作系统管理磁盘空间。它以适当的方式管理存储的文件和文件夹。 6. 进程管理 CPU 一次可以执行一项任务。如果有许多任务,操作系统将决定哪个任务应该获得 CPU。 7. 设备控制 操作系统还控制连接到计算机的所有设备。硬件设备由称为设备驱动程序的小软件控制。 8. 提供界面 用户界面用于使用户界面与计算机相互作用。用户界面控制如何输入数据和指令以及如何在屏幕上显示信息。操作系统为用户提供两种类型的界面: 1. 图形行界面:它与视觉环境交互以与计算机通信。它使用窗口、图标、菜单和其他图形对象来发出命令。 2. 命令行界面:它通过键入命令提供与计算机通信的界面。