结果:最终分析中包括三个RCT(Keynote-671,Nadim II和Aeegean)。PIO group (neoadjuvant platinum-based chemotherapy plus perioperative immunotherapy) exhibited superior ef fi cacy in OS (hazard ratio [HR]: 0.63 [0.49-0.81]), EFS (HR: 0.61 [0.52, 0.72]), objective response rate (risk ratio [RR]: 2.21 [1.91, 2.54]), pathological complete response (RR:4.36 [3.04,6.25]),主要病理反应(RR:2.79 [2.25,3.46]),R0切除率(RR:1.13 [1.00,1.26])和辅助治疗速率(RR:1.08 [1.08 [1.01,1.15])与PP组(NeoAdjuvivant Plasity Plaser Plaser Plaser Planeboers plyoper plyoper plyoper plyoper)相比。在亚组分析中,EFS几乎在所有亚组中都倾向于PIO组。BMI(> 25),T阶段(IV),N阶段(N1-N2)和病理反应(具有病理完全反应)是PIO组的有利因素。在安全评估中,PIO组表现出更高的严重AE(28.96%比23.51%)和AES导致治疗中断(12.84%比5.81%)。同时,尽管总的不良事件,3-5级不良事件和致命的不良事件倾向于有利于PP组,但差异在统计学上并不显着。
结果:癌症免疫疗法研究中TCM的发表率从1994年到2018年稳步增长,从2018年到2023年迅速增长。中国和TCM大学在这一领域取得了最大的研究进步。研究最多的癌症类型是肝脏,肺和结直肠癌。然而,很少有关于上呼吸道肿瘤,宫颈癌和黑色素瘤的研究,这值得更多关注。研究趋势已逐渐从体内和体外模型转变为临床效率。同时,研究重点从化合物TCM制剂或成分类别转变为特定的药效成分,以及从细胞因子转变为免疫检查点的相应靶标。一般而言,分子对接与多摩学分析相结合是TCM中一种流行而流行的研究方法,用于癌症免疫疗法,帮助研究人员更全面,准确地了解TCM在癌症免疫疗法中的机制。通过分析文献,很明显,基于TCM的免疫疗法应在整个癌症过程中有助于有效的维持或辅助治疗,而不仅仅是在后期阶段。
a 英国牛津大学医学科学部儿科系;b 瑞典哥德堡阿斯利康公司寡核苷酸化学、发现科学、生物制药研发部;c 加拿大安大略省麦克马斯特大学化学与化学生物学系;d 英国伦敦 MiNA 治疗学、翻译与创新中心;e 瑞士苏黎世联邦理工学院化学与应用生物科学系制药科学研究所;f 英国伦敦 Sixfold 生物科学、翻译与创新中心;g 瑞典卡罗琳斯卡医学院生物科学与营养系;h 瑞典哥德堡阿斯利康公司机械与结构生物学、发现科学、生物制药研发部;i 德国维尔茨堡亥姆霍兹 RNA 感染研究中心(Hzi)亥姆霍兹感染研究中心(Hiri); j RNA 生物学组,维尔茨堡大学分子感染生物学研究所,德国维尔茨堡
建议引用推荐引用Gubin,Matthew M。; Artyomov,Maxim n。; Mardis,Elaine R。;和Schreiber,Robert D.,“肿瘤新抗原:建立个性化癌症免疫疗法的框架”。临床研究杂志。125,9。3413-3421。(2015)。https://digitalcommons.wustl.edu/open_access_pubs/4270
2023年1月30日 - •大脑传感技术。•神经居住技术。•脑部计算机界面技术。第27页。•合成生物学。•生物效果。•...
新辅助化学免疫性疗法已彻底改变了非小细胞肺癌(NSCLC)的治疗策略,并确定可能对这种先进治疗的候选者具有重要的临床意义。目前的多机构研究旨在开发一种深度学习模型,以预测基于计算机断层扫描(CT)成像的NSCLC中对新辅助免疫疗法的病理完全反应(PCR),并进一步探讨了拟议的深度学习签名的生物学基础。在2019年1月至2023年9月,总共有248名接受新辅助免疫疗法的参与者在Ruijin医院,Ningbo Hwamei医院接受NSCLC的手术,然后在Ruijin医院进行NSCLC手术和Zunyi医科大学的后医院。在新辅助化学免疫性疗法之前的2周内进行了成像数据。鲁伊因医院的患者被分为培训集(n = 104)和6:4比率的验证集(n = 69),而宁波·霍马伊医院(Ningbo Hwamei Hospital)和祖尼医科大学(Zunyi)医科大学的其他参与者则是外部队列(n = 75)。在整个人群中,在29.4%(n = 73)的病例中获得了PCR。我们对PCR预测深度学习签名曲线下的区域(AUC)为0.775(95%的置信间隔[CI]:0.649-0.901)和0.743(95%CI:0.618-0.869)的验证集和外部队列中的0.5%(95%)(95%)(95%)(95%)(95%)。临床模型的0.689)和0.569(95%CI:0.454-0.683)。此外,较高的深度学习评分与微环境中细胞代谢途径和更多抗肿瘤免疫的上调相关。我们开发的深度学习模型能够预测NSCLC患者的新辅助化学免疫性疗法。
免疫治疗被广泛认为是一种很有前途的癌症治疗方法,但肿瘤微环境(TME)的免疫效应相抑制和免疫相关不良事件的产生限制了它的应用。研究表明,声动力疗法(SDT)能在杀死肿瘤细胞的同时有效激活抗肿瘤免疫。SDT产生肿瘤的细胞毒物质,然后在超声作用下选择性激活声敏剂,导致细胞凋亡和免疫原性死亡。近年来,各种SDT单独使用以及SDT与其他疗法联合使用被开发来诱导免疫原性细胞死亡(ICD)和增强免疫治疗。本文综述了近年来SDT与纳米技术的研究进展,包括单独使用SDT的策略、基于SDT的协同诱导抗肿瘤免疫的策略以及基于SDT的多模态免疫治疗的免疫疗法。最后讨论了这些基于SDT的疗法在癌症免疫治疗中的前景与挑战。
CD20 主要位于 B 细胞上,在 B 细胞的发育、分化和激活中起着至关重要的作用,是治疗 B 细胞恶性肿瘤的关键治疗靶点。针对 CD20 的单克隆抗体的突破,尤其是利妥昔单抗,彻底改变了 B 细胞恶性肿瘤的预后。利妥昔单抗已获批用于治疗各种血液系统恶性肿瘤,标志着癌症治疗的范式转变。在当前情况下,针对 CD20 的免疫疗法继续快速发展。除了传统的 mAb 之外,进展还包括抗体-药物偶联物 (ADC)、双特异性抗体 (BsAbs) 和嵌合抗原受体修饰 (CAR) T 细胞。ADC 将抗体的精确性与药物的细胞毒性潜力相结合,为增强治疗效果提供了一条有希望的途径。BsAb,特别是 CD20xCD3 构建体,可重定向细胞毒性 T 细胞以消除癌细胞,从而提高其治疗作用的精确度和效力。CAR-T 细胞是对抗血液系统恶性肿瘤的一种有前途的策略,代表了真正个性化的治疗干预措施之一。目前,许多新疗法正在临床试验中进行评估。本综述是对 CD20 靶向疗法的全面总结,强调了持续存在的进展和挑战。尽管取得了重大进展,但与这些疗法相关的不良事件和耐药性的产生仍然是关键问题。了解和缓解这些挑战对于 CD20 靶向免疫疗法的持续成功至关重要。
在细胞外基质 +化学定义的培养基中,将患者肿瘤组织样品培养为肿瘤器官。PDO被鉴定为Hoechst阳性细胞簇,使用荧光活力染色单独确定每个PDO的活细胞的数量。药物筛查用每种化合物3剂进行3剂,并计算出TO-PRO-3活细胞测量曲线下的反向面积以量化响应。tempus XT和整个转录组测定法用于在器官和配对的患者肿瘤上执行NGS(如果有)。通过我们的标准管道处理所得数据,以识别可靶向突变,新抗原,CNV和融合。
免疫疗法代表了一种开创性的治疗方法,基于免疫系统干扰肿瘤进展的内在能力,这为子宫内膜癌的治疗打开了水平。但是,免疫疗法的临床效率受到患者耐药性的发展受到阻碍。对免疫疗法的耐药性是多因素机制,包括调节免疫检查点分子的肿瘤细胞中的遗传和表观遗传改变,导致免疫监测逃避。肿瘤微环境可以协调免疫抑制环境,减轻免疫反应并促进肿瘤进展。要克服子宫内膜癌中的免疫治疗性,我们必须揭示肿瘤细胞,宿主免疫系统和肿瘤微环境之间复杂相互作用的机制。必须开发对免疫治疗反应的预测生物标志物的识别和能够逆转抗药性途径的创新剂。我们的评论总结了有关肿瘤微环境细胞作用及其调节分子在免疫检查点抑制剂的治疗作用的机制中的积累数据,包括抗治疗性。我们在这里提出的主要问题 - 哪一组患者最有利于在子宫内膜癌中获得持久的免疫疗法反应?