人们期待血小板生物学方面有新的进展,而且由于血液中血小板聚集体的存在与心肌梗塞、脑梗塞等血栓性疾病有关,这一发现也有望在血栓性疾病的临床诊断方法、药理学和治疗方面带来突破性的应用。 3.公告概要:东京大学研究生院理学研究科研究生周雨琪和合田圭介教授,与东京大学研究生院医学院及东京大学医院检验医学部助理教授安本淳(研究时)、弥富丰教授合作,在世界上首次发现血液中的血小板聚集体(注1)可以进行分类,并成功开发出一种名为“智能血小板聚集体分类器(iPAC)”的定量建模方法(图1)。 iPAC是利用特殊显微镜获取的大量血小板和血小板聚集体的图像,利用深度学习(注2)构建的人工智能系统。他们利用iPAC注意到,血小板聚集体的形态(形状、大小、复杂程度等)会根据刺激物质(激动剂;注3)的种类而发生细微差异,并取得了根据血小板聚集体的形态来识别和分类诱导活化的激动剂种类的突破性发现。 iPAC是阐明血小板聚集机制的有力工具。此外,由于血液中血小板聚集物的存在与导致心肌梗塞和脑梗塞的动脉粥样硬化血栓形成以及最近新型冠状病毒感染引起的血栓形成有关,因此预计iPAC将应用于血栓性疾病的开创性临床诊断方法、药理学方法和治疗方法。 这项研究得到了日本内阁府科学技术创新委员会、日本学术振兴会 (JSPS) 核心对核心计划和白石基金会领导的 ImPACT 计划的支持。该研究成果将于2020年5月12日(英国时间)在eLife网络版上发表。
混合性结缔组织病 (MCTD) 是一种胶原病,具有多种临床表现,包括系统性红斑狼疮、系统性硬化症和多发性肌炎等混合症状,是一种以抗 RNP 抗体参与为特征的免疫疾病。因此,当观察到本病的临床表现之一系统性红斑狼疮样症状时,作为相应的主要筛查试验的定性抗DNA抗体检测对于做出正确的诊断(包括确诊后的修改诊断)是有用的。
不育症是一个研究领域,近年来一直引起关注,以及出生率下降的问题。另一方面,自闭症是一种发育障碍,具有诸如沟通障碍和有限的利益和偏好之类的特征,并且是干扰社会生活的疾病,随着患者的数量增加,它已成为一个主要的社会问题。尽管最近有几份报告表明自闭症患者的妊娠率较低,但目前尚不清楚这两种疾病是如何相关的。该研究小组的重点是蛋白质CHD8,这是自闭症患者中最常见的突变。结果,我们发现引起自闭症的蛋白质CHD8不仅在大脑中,而且在睾丸,生殖器中都强烈表达。此外,当CHD8缺乏生殖细胞时,睾丸显着降低,导致不育,几乎没有生成精子。特别是,发现缺乏CHD8的生殖细胞会干扰减数分裂的进展(*2)。此外,基因表达分析表明,CHD8调节PRDM9(*4)的表达水平,一种组蛋白甲基化修饰酶,即使在转移期间,DNA双链断裂也需要DNA双链断裂(*3)。我们发现CHD8通过调节PRDM9调节减数分裂的进展,并且对正常的精子发生至关重要。有趣的是,已知CHD8通过组蛋白甲基化修饰参与自闭症的发展。在这项研究中,我们发现CHD8通过组蛋白甲基化修饰的共同机制有助于不同疾病(例如自闭症和不育)的发展。预计这项研究将导致治疗的发展,并阐明已成为自闭症和不育等主要社会问题的疾病机制。
本科在Yasuda教授的指导下,积极开展导管消融及植入装置治疗。由于我们的医院是心脏移植机构,因此我们在治疗与心脏功能低下相关的心律失常方面也有丰富的经验。我科2020年共实施203例导管消融手术,其中近年来日益流行的房颤消融占比64%(图1)。除了治疗心脏功能保留的病例外,我们还治疗了许多患有器质性心脏病和心力衰竭的病例,为改善患者的预后和生活质量做出了贡献。我们还计划恢复冷冻球囊消融术,旨在提供有效、快速的心房颤动消融术。此外,在心脏手术后或患有器质性心脏病的病例中,还观察到具有复杂心律失常回路的房性心动过速和室性心动过速。针对这些心律失常,我们充分利用近年来取得显著进展的3D映射等成像技术,在详细分析的基础上提供有效的治疗(图2)。 我们还拥有多例植入式心脏复律除颤器(包括皮下植入式心脏复律除颤器)和心脏再同步治疗(双心室起搏)的经验,用于治疗危及生命的心律失常和严重心力衰竭。 图 3 显示了进行心脏再同步治疗的严重心力衰竭示例。患者心力衰竭状况得到明显改善。 我们不仅提供药物治疗,还根据适应症提供导管消融和植入装置治疗等非药物治疗,提供心律失常疾病的全面管理。如果您有心律失常的情况需要治疗,请随时转介给我们。 (作者:心律失常组组长 中野诚)
作为本次研发项目的共同研究员,名古屋大学信息学研究生院的森健作教授目前已开发并商业化了一种利用人工智能(AI)的结肠镜检查诊断支持设备(EndoBRAIN、EndoBRAIN-EYE)。 另一方面,膀胱镜诊断辅助装置在日本国内和国外都尚未实现商业化。我们获得了AMED转化研究战略促进计划(庆应义塾大学)Seeds H.A.的资助,开发了膀胱镜诊断支持的AI程序(专利申请号2021-178275)。在性能评估测试中,对三种疾病(HIC、BPS、BT包括CIS)的诊断准确率明显高于泌尿科医生(AI:88.5%,泌尿科医生:72.0%,见下图)。
问:脑膜炎球菌危险吗?答:是的。每年,美国有数百人感染脑膜炎球菌病并死于该感染。此外,五分之一的幸存者会遭受永久性终身残疾,如癫痫、肢体缺失、肾病、听力丧失和智力障碍。大多数脑膜炎球菌感染发生在 1 岁以下的婴儿中。 2至10岁儿童中脑膜炎球菌病的发病率较低,但随着青春期的开始,发病率会升高。青少年感染的可能性比婴儿小,但如果感染,则死亡的可能性更大。 脑膜炎球菌尤其危险,因为它会迅速产生大量称为内毒素的有毒物质。内毒素会引起血管损伤,导致低血压和休克。因此,脑膜炎球菌感染血液后很快就会致命。孩子们前一分钟可能还好好的,但4-6小时后却会死去。该疾病进展如此之快,甚至适当的治疗干预都可能会被延迟,或者初步治疗可能无效。脑膜炎球菌病常常引起社区恐慌,因为疫情发生在大学、学校、托儿所、军营和其他人们密切接触的地方。
据报道,性,冲动,阿卡西西亚/精神病障碍,躁狂症,躁狂症等都是躁狂。此外,尽管因果关系尚不清楚,但这些症状和行为的病例报告说,潜在疾病,自杀思想,自杀企图和其他有害行为的恶化。仔细观察患者的病情和病理学变化,如果观察到这些症状加剧,应采取适当的措施,例如逐渐减少剂量并停止患者。 [参见5.1,7。,8.1,8.1,8.3,8.4,9.1.1-9.1.4,9.7.2,9.7.3和15.1.1] 8.3为了防止过量用户出于自杀目的,自杀倾向的患者是
本次研究中,西口浩司副教授和中泽徹教授领导的研究小组建立了一种创新的基因治疗技术,使以前需要多个 AAV 才能进行的基因组编辑仅需一个 AAV 即可完成。当将该基因治疗技术应用于基因组编辑较为困难的神经系统疾病小鼠模型时,基因组编辑效率显著提高,并取得了较高的治疗效果。在这项新的基因治疗技术中,基因组编辑所需的组件已经被微型化,使得之前分离到两个 AAV 中的基因组编辑所需的组件可以合并到单个 AAV 中(图 1B)。 具体来说,通过利用微同源介导末端连接(MMEJ)作为基因组修复机制来插入正常序列,使用最少量的包含正常序列的DNA准确地修复基因组。当将这种 AAV 注射到患有完全失明视网膜变性的成年小鼠体内时,大约 10% 的致病突变得到正常化,光敏感度提高了 10,000 倍,视力恢复到正常值的约 60%(图 2)。此外,该疗法表现出与传统基因替代疗法相当的治疗效果,证明了这种新疗法的实用性。这一成果为基因疗法的发展铺平了道路,不仅针对以前无法治愈的视网膜色素变性,也针对许多其他遗传疾病。
8。重要的基本预防措施 8.1抑郁症状的患者可能具有自杀念头,并且可能是自杀尝试,因此此类患者在改变剂量时应仔细观察患者的状况和病理的变化。 [见5.1,7。,8.2-8.4,9.1.1,9.1.2,9.7.2,9.7.3和15.1.1] 8.2焦虑,躁动,兴奋,恐慌发作,失眠,易怒,敌意,敌意,敌意,侵略,侵略性,冲动,抗气性,阿卡西亚(Akathysia)/心理障碍,曼尼亚(Akathysia/Psychomotor Discormia conderance of Mania)曾经发生过,发生了疾病,发生了症状,发生了疾病,发生了发生,等等,发生了疾病,发生了发生的事件,等等。此外,尽管因果关系尚不清楚,但这些症状和行为的病例报告说,潜在疾病,自杀思想,自杀企图和其他有害行为的恶化。仔细观察患者病情和病理的变化,如果观察到这些症状的任何恶化,应采取适当的措施,例如逐渐减少剂量并停止患者。 [5.1,7。,8.1、8.3、8.4、9.1.1-9.1.4、9.7.2、9.7.3、15.1.1] 8.3当开处方自杀趋势的患者时,请最小化一种剂量的处方天数,以防止过量服用过量。 [5.1,7。,8.1、8.2、8.4、9.1、1.1、9.1.2、9.7.2、9.7.3和15.1.1] 8.4对家庭等提供充分的解释。 [5.1,7。8.1-8.3,9.1.1-9.1.4,9.7.2,9.7.3,15.1.1] 8.5可能会发生嗜睡,头晕等,当对汽车驾驶危险的操作机器时,请小心。
该计划已知GPCR介导的信号传导是通过激活许多信号因子(包括异三聚体G蛋白(注3),GPCR激酶(GRK)(注4)和β-arrestin(注5)(图1)来进行的(图1)。该研究小组创建了大量使用CRISPR-CAS9方法(注6)(一种基因组编辑技术)在GPCR信号传导因子上不足的细胞(图2)。使用这些细胞的研究表明,通过GPCR信号中的β-arrestin,GPCA蛋白的选择性激活以及通过GRK调节GPCR活性的信号传导。这篇审查论文(包括尖端的研究报告)解释了遗传缺陷培养的细胞揭示的信号转导因子的新功能,以及有关多种类型的基因缺陷培养的细胞的详细信息。此外,我们提出了一种使用遗传缺陷培养细胞(图3)和新药理工具的开发来对疾病涉及的信号转导因子的功能分析方法。未来的发展本综述希望,随着使用基因缺陷型细胞的分析,将来将进一步加速GPCR研究。此外,通过创建缺乏更多信号转导因子并在具有不同特性的培养细胞系中建立基因缺陷细胞的细胞,预计它将导致涉及GPCR信号转导因子的疾病机制,并涉及科学进步。