加入6孔板中并在28°C下孵育2小时(不摇晃)以形成单层。我们制备了8μL Cellfectin II 试剂(Gibco-10362-100)和1μg每种DNA样本,并根据Bac-to-Bac手册提供的指导进行孵育。去除培养基后,将DNA转染试剂复合物逐滴加入6孔板中。将板在28°C下孵育5小时。然后,在从细胞培养板中取出DNA样本后,向每个孔中加入3mL不含抗生素的新鲜培养基进行孵育。每隔24小时观察一次细胞病变效应(CPE)。感染后72-96小时收获P0重组杆状病毒,并进行噬斑测定(Bac-to-Bac手册)以检查滴度。收获P1和P2以增加重组杆状病毒的库存和滴度,用于蛋白质表达。
• 2007 – 在“行业指南:支持大流行性流感疫苗许可所需的临床数据”中为促进大流行性流感病毒疫苗许可的方法提供了指导 • 针对美国许可的季节性灭活疫苗的制造商 • 确定剂量和时间表的临床免疫原性研究 • 针对美国许可的减毒活疫苗的制造商 • 注意到由于重配的可能性而对大流行之前临床研究的特别关注 • 针对没有美国许可的季节性疫苗的制造商 • 注意到在确定可预测临床益处的免疫替代品方面的挑战 • 2007 – 第一个 H5 流感病毒疫苗的许可 – 赛诺菲巴斯德 • 两剂 90 µg 肌肉注射,间隔 28 天; 18-64 岁 • 评估 Clade 1 A/Vietnam/1203/2004 疫苗 • 2009 年 – H1N1 大流行 • 宣布 H1N1 紧急状态 • BLA 的菌株变化补充使疫苗可以最快地获得 • 启动单价疫苗的临床试验以确认免疫原性并告知所需的任何剂量和时间表修改;数据在批准后提交
C9ORF72 基因内含子 1 中的六个核苷酸重复扩增是影响肌萎缩侧索硬化症和额颞叶痴呆症患者的最常见的基因突变。重复扩增的双向转录会产生正义和反义重复 RNA,这些 RNA 随后可以在所有阅读框架中翻译,从而产生具有独特末端的六种不同的二肽重复 (DPR) 蛋白。这些蛋白质在 C9ORF72 重复扩增中的准确翻译起始位点仍然难以捉摸。我们使用 CRISPR-Cas9 基因组编辑和空间阻断反义寡核苷酸 (ASO) 研究反义重复 RNA 中的不同 AUG 密码子对 C9ORF72 扩增载体运动神经元和淋巴母细胞中 DPR 蛋白、poly(GP) 和 poly(PR) 产生的贡献。然后,我们利用针对 C9ORF72 正义重复 RNA 的 ASO 来检查正义或反义 RNA 是否是 poly(GP) 蛋白的主要来源 - 这个问题存在相互矛盾的证据。我们发现这些 ASO 减少了预期的正义 RNA 靶标,但也减少了反义 RNA,从而阻止了 poly(PR) 的产生。我们的数据强调了反义 CCCCGG 重复扩增之前的序列对于反义 DPR 蛋白合成的重要性,并支持使用正义 C9ORF72 ASO 来防止正义和反义依赖性 DPR 蛋白在 C9ORF72 ALS/FTD 中的积累。
皮肤是人体最大的器官,覆盖人体表面,并成为维持内部环境稳定性的关键障碍。各种微生物(例如细菌,真菌和病毒)位于皮肤表面,并且构成的角质形成细胞对致病性微生物表现出抑制作用。皮肤是针对致病微生物感染的必不可少的障碍,其中许多表现为皮肤病变。因此,对相关皮肤病变的快速诊断对于早期治疗和传染病的干预至关重要。随着人工智能的持续快速发展,在医疗保健,改造医疗服务,疾病诊断和管理方面取得了重大进展,包括对皮肤病学领域的重大影响。在这篇综述中,我们详细概述了由致病性微生物引起的人工智能在皮肤和性传播疾病中的应用,包括辅助诊断,治疗决策,以及对流行病学特征的分析和预测。
预防大流行性流感的基石是开发和及时提供与大流行性流感毒株相匹配的疫苗。获得此类疫苗许可的最快捷途径是通过对已获许可的疫苗进行“毒株变化补充”,这一过程用于年度季节性流感疫苗毒株变化,也用于许可大流行性甲型流感 (H1N1) 2009 单价疫苗。为了能够及时获得“毒株变化补充”许可,必须在大流行开始之前许可针对可能引发大流行的甲型流感亚型的流感疫苗(以下术语“大流行”旨在包括与公共卫生紧急声明相关的非季节性流感病毒爆发或流行病)。如果发生大流行或大流行迫在眉睫,提前许可此类原型流感疫苗将缩短通过“毒株变化补充”许可针对大流行毒株的疫苗的时间。大流行疫苗的许可申请必须包括化学、制造和控制信息,以及支持疫苗安全性和有效性的大量证据。在大流行之前使用原型大流行流感疫苗进行的临床研究可以提供免疫原性数据以确定剂量和疫苗接种方案 1 ,以及安全性数据 2 。但是,对于针对当前季节性流感疫苗中未包括的可能导致大流行的甲型流感亚型的疫苗(即 H1 和 H3 除外),在没有大流行甲型流感亚型传播的情况下,临床终点功效研究是不可行的。此外,正如 2009 年甲型流感 H1N1 大流行所证明的那样,疫苗制造商在大流行期间进行临床终点功效研究可能不合道德或不可行。 FDA 已与有意开发大流行性流感疫苗的制造商合作,在获得许可之前建立支持有效性的途径,这些方法之前已有描述(参考:支持大流行性流感疫苗许可所需的临床数据 | FDA 和简报文件,2012 年 11 月 14-15 日 VRBPAC)。作为高致病性禽流感 (HPAI) 病毒大流行防范工作的一部分,包括考虑更新原型流感 A (H5) 单价疫苗的成分,FDA 要求 VRBPAC 讨论并提供有关拟议的菌株变化过程和在大流行间期更新获得许可的原型大流行性流感疫苗的预期数据要求的意见(见第 5 节)。
摘要糖尿病性视网膜病(DR)和糖尿病性黄斑水肿(DME)是糖尿病(DM)患者的微血管并发症之一,如果没有早期诊断并进行适当治疗,可能会导致失明。可以使用各种技术诊断和治疗这两种疾病。治疗方式包括激光光凝治疗,玻璃体切除术手术,眼内类固醇注射和抗血管内皮生长因子(抗VEGF)注射。这些方法与代谢控制结合使用时可以帮助避免失明。这些建议是通过使用基于证据的医学原则来帮助医学专业人员(尤其是眼科医生)来识别和治疗DME案件的。主要目标是提供共识建议,并希望减少印度尼西亚DR和DME引起的失明发病率。
摘要:计算机视觉是医学图像分析中的强大工具,支持对眼部疾病的早期检测和分类。糖尿病性视网膜病(DR)是继发于糖尿病的严重眼科疾病,伴随着危险性疾病的几个早期迹象,例如微型神经疗法(MAS),出血(Hemos)和渗出液(EXS),这些症状已被广泛研究并靶向由计算机视觉模型检测的对象。在这项工作中,我们测试了最先进的Yolov8和Yolov9 Architectures DR Feldus功能分割的表演,而无需编码经验或编程背景。我们从公共Messidor数据库中获取了一百个DR图像,并手动标记并准备了它们以进行像素分割,并测试了不同模型变体的检测能力。我们通过数据增强增加了训练样本的多样性,包括平铺,翻转和旋转眼底图像。在检测诸如MA,Hemo和ex之类的DR病变时,提出的方法达到了可接受的平均平均精度(MAP),以及眼睛后极的标志,例如视盘。我们将我们的结果与涉及不同神经网络的文献中的相关作品进行了比较。我们的结果是有希望的,但尚未准备好进入临床实践。必须进行准确的病变检测,以确保早期和正确的诊断。未来的工作将进一步研究病变检测,尤其是MA分割,并通过改进的提取技术,图像预处理和标准化数据集进行研究。
简介。糖尿病性视网膜病的发作和发展在怀孕期间更为普遍。怀孕对糖尿病性视网膜病没有长期影响;但是,在50-70%的病例中,视网膜病变的变化仍在继续。在妊娠中期,恶化的可能性最高,产后一年。与疾病进展相关的其他因素包括糖尿病的持续时间,受孕时的视网膜病程度,高血糖治疗,贫血,贫血和相关高血压的发育。在严重的非增生性视网膜病例的情况下,建议迅速启动激光光凝,而不是等待早期增殖。在怀孕前后,保持良好的糖尿病控制可以帮助防止疾病进展和严重的视力丧失。
简介:葡萄糖共转运蛋白抑制剂可能会增加胰岛素需要患者的β-羟基丁酸(BHB)。我们确定了与基线(D BHB)和糖尿病性酮症酸中毒(DKA)相关的因素,其中1型糖尿病患者(T1D)接受了sotagli lof ozin作为胰岛素辅助。研究设计和方法:该事后分析比较了T1D接受sotagli lof ozin 400 mg或安慰剂的成年人的D BHB水平6个月。我们评估了与D BHB相关的临床和代谢因子,并使用逻辑回归模型来确定与BHB值> 0.6和> 1.5 mmol/L相关的预测因子(Intandem3群体; n = 1402)或在汇总分析中与DKA事件(Intandem1-3; n = 2453)。结果:从基线(中位数为0.13 mmol/L),中位空腹BHB在24周,索塔格利 - 弗利辛对安慰剂的sotagli-forsbozin versbo;随着时间的推移,67%的患者没有BHB的变化或最小变化。与治疗BHB> 0.6或> 1.5 mmol/L相关的因素包括基线BHB和Sotagli lof ozin的使用。年龄,胰岛素泵的使用,sotagli lof ozin的使用,基线BHB和D BHB与DKA发作显着相关。与治疗无关,DKA风险增加了18%,基线BHB的每0.1-mmol/L增加,每0.1-mmol/L的基线均增加8%。结论:基线BHB和D BHB的增量增加与更高的DKA风险相关,而与治疗无关。在T1D患者中,在24周内将sotagli lof ozin添加到胰岛素中增加了BHB,并且与DKA事件增加有关。这些结果强调了BHB测试,监测和个性化患者对DKA风险,缓解,识别和治疗的重要性。
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年9月21日发布。 https://doi.org/10.1101/2024.09.17.613293 doi:biorxiv Preprint