摘要:问题背景:传统的蚯蚓堆肥可能无法为某些园艺作物提供理想的营养平衡。当蚯蚓堆肥批次的营养含量不同时,预测作物的表现可能具有挑战性。传统的蚯蚓堆肥可能不一定包含足够广泛的微生物来支持强劲的植物生长并有效抵御土壤传播的疾病。用于园艺的作物有特定的营养需求,更容易受到病虫害的侵害。现有的蚯蚓堆肥生物强化领域强调了木霉菌和其他有益微生物在提高这种有机肥料效力方面发挥的关键作用。蚯蚓堆肥是蚯蚓介导的有机废物分解产生的营养丰富的副产品,对土壤肥力和植物营养有重大贡献。然而,它通常缺乏适当的营养平衡。蚯蚓堆肥中的木霉菌和其他有益细菌可以增强营养摄入,促进植物茁壮成长,增强对病虫害的抵抗力。微生物增强了作物的营养生物强化,重点关注其对园艺作物吸收的影响。这项研究讨论了木霉如何刺激生长和溶解矿物质,从而增加植物对矿物质的利用率。蚯蚓堆肥与不同微生物的生物强化的更广泛影响包括改善土壤健康、可持续农业和降低对合成肥料的依赖。不同微生物、蚯蚓堆肥之间的相互作用以及对营养密集型作物和可持续粮食生产的影响是巨大的。关键词:有益微生物、生物强化、田间表现、园艺作物、蚯蚓堆肥。介绍蚯蚓堆肥可以用有益微生物进行生物强化,以提高肥料的有效性。菌根真菌、植物促生根际细菌 (PGPR) 和其他有益微生物可以帮助改善营养摄入、促进植物发育并提高植物对病虫害的抵抗力 (Fasusi 等人,2021 年)。蚯蚓堆肥是蚯蚓分解有机物质时产生的有机肥料。它有助于提高土壤肥力和结构,是植物的重要营养来源(Thakur 等人,2021 年)。蚯蚓堆肥并不总是能提供适当的营养平衡和有益微生物,以实现最佳植物生长。经过生物强化的蚯蚓堆肥可提高作物产量和质量。研究表明,经过生物强化的蚯蚓堆肥可以增加植物高度,提高果实产量、大小和质量,并提高园艺作物的植物病原体抗性(Sharma 等人,2022 年)。使用有益微生物进行蚯蚓堆肥生物强化是一种有前途的可持续农业方法,可以帮助改善土壤健康,提高作物产量,并减少合成肥料和农药的使用(Rehman 等人,2023 年)。蚯蚓堆肥作为园艺作物生产系统中的土壤改良剂越来越受欢迎,因为它比传统肥料具有许多优势(Sindhu 等人,2020 年)。
农业部门仍然是国民经济的关键部门之一,占国内生产总值的 35% 左右。该国的农业面积估计为 570 万公顷,农业部门面临着许多挑战,这些挑战对其整体表现产生了不利影响。除了家庭自给性农业的普遍做法和强烈的粗放耕作倾向外,降雨不稳定,局部地区干旱,病虫害侵袭,机械化程度低和国家研究推动的技术使用率低等问题也存在。除了这些制约因素外,由于恐怖主义的出现造成的不安全压力,该国正面临减少耕地的强烈趋势。布基纳法索正在努力实现粮食自给自足。在健康方面,该国面临着疟疾、登革热和基孔肯雅病等媒介传播疾病的巨大压力。
为期五天的培训于 3 月 14 日至 18 日在基戈马地区卡苏鲁区举行,来自卡塔维、塔波拉和基戈马地区的 61 名学员以及来自国际热带农业研究所、坦桑尼亚农业研究所和坦桑尼亚官方种子认证机构 (TOSCI) 的培训师参加了培训。培训介绍了商业化木薯种子系统模型。推广人员学习了良好的农业实践、病虫害管理、木薯品种识别、种子繁殖、种子质量控制和登记流程。他们还学习了种子业务,以帮助他们了解木薯种子系统并更好地支持他们所服务的农民,以及 Seed Tracker 和 PlantVillage Nuru 等数字工具。
摘要:栽培番茄(Solanum lycopersicum)是世界上经济价值最高、种植最广泛的蔬菜作物之一。然而,番茄植株经常受到生物和非生物胁迫的影响,从而降低产量并影响果实品质。栽培番茄的表型多样性很明显,特别是园艺性状,但遗传多样性相当狭窄。针对病毒、真菌、细菌和线虫等不同病原体的主要抗病基因主要来自野生番茄品种,并渗入栽培番茄中。在这里,我们列出了在 S. pimpinellifolium、S. habrochaites、S. peruvianum、S. chilense、S. pennellii、S. galapagense、S. arcanum 和 S. neorickii 中发现的主要病虫害抗性基因,并展望了当前对番茄野生近缘种的了解与所需了解之间的差距。
● 确定气候变化的负面影响(与农业相关)并培训社区人员采取适应措施。 ● 培训农民和其他相关利益相关者进行气候智能型综合土地管理。 ● 在社区人员中建立能力并产生新知识,使他们能够更好地适应和保护社区免受极端气候条件的影响,包括热浪/寒潮、水盐度增加、洪水和其他挑战。 ● 培训农民进行土壤改良,包括使用绿肥、FYM、蚯蚓堆肥、动物粪便,以及何时和如何使用化学肥料来提高土地生产力。 ● 培训农民进行综合病虫害管理(IPM)和高效水资源管理。 ● 培训农民了解森林砍伐的负面影响并培养应对土地退化的技能,包括造林/重新造林、轮作、种植模式、种植强度、覆盖/覆盖作物种植。
传统上,水稻种植严重依赖于针对特定性状而定制的单一品种,但这些方法在恢复力和稳定性方面表现出局限性。采用品种混合(VarMix)使我们能够利用遗传多样性,从而提高产量稳定性,加强病虫害管理,优化资源效率,最终促进更可持续、更具恢复力的水稻生产系统。本研究使用加性主效应和乘性相互作用(AMMI)方法,结合方差和主成分分析(PCA),研究了 12 个不同环境中 12 个水稻品种混合物和单一品种的表现。分析表明,环境因素是遗传变异的主要驱动因素,对水稻产量动态有重大贡献。值得注意的是,NSIC Rc298 (A)、NSIC Rc298: NSIC Rc214: NSIC Rc216 (ABC) 和 NSIC Rc214: PSB Rc82: NSIC Rc238 等基因型
美国农业部 (USDA) 动物和植物卫生检验局 (APHIS) 拨款 775 万美元,支持《植物保护法》第 7721 条 (PPA 7721) 计划的国家清洁植物网络 (NCPN) 下的 21 个项目。此金额包括直接项目成本。NCPN 致力于建立一个清洁植物中心网络,提供诊断和病原体消除服务,以生产清洁的繁殖植物材料,并在美国各地的场地维护经过病原体测试的植物材料块。为了实施该计划,NCPN 与广泛的利益相关者进行了磋商,包括州农业部、土地赠予大学和非土地赠予农业学院。在 2024 财政年度 (FY),14 个州和波多黎各的大学、州、联邦机构和非营利组织将开展选定的项目。通过与这些团体合作,USDA 及其合作者利用并扩展了他们在国家、地区和地方层面保护、检测和应对植物病虫害的能力。
寒冷、干旱、盐碱等非生物胁迫和包括病虫害在内的生物胁迫是影响植物生长、限制农业生产力的主要因素。近年来,随着分子生物学的飞速发展,基因组编辑技术以其高效、可控、定向编辑的特点在植物学和农学中得到了广泛的应用。基因组编辑技术在抗病品种培育方面有着巨大的应用潜力,这些技术在重要禾谷类作物(如玉米、水稻、小麦等)、蔬菜和果树作物的抗性育种中取得了显著成果,其中CRISPR/Cas(成簇的规律间隔的短回文重复序列/CRISPR-associated)为全球作物产量的稳定提供了保障。本文综述了CRISRR/Cas的发展及其在不同重要作物抗性育种中的应用,强调了CRISRR/Cas技术在育种中的优势和重要性,并指出了可能存在的问题。
气候变化是可持续发展议程中的重要议题,基于气候科学大数据的机器学习与预测研究将在深化对气候变化的理解中发挥积极作用,通过计算模拟或其他方法对改进策略及其影响进行建模,将为减缓全球变暖提供分析结果和支持。在追求零饥饿的道路上,机器学习模型可以与气候模型相结合,预测特定地区的农作物产量;图像处理技术可用于监测农作物生长情况,在早期预警潜在病虫害风险和威胁,帮助提高农作物产量;此外,智能物流技术可以帮助建立农作物与终端消费者之间的无缝连接;在环境保护方面,自动化智能监控技术可用于监测自然灾害和造成环境破坏的行为;多模态数据处理可以加强对水和空气质量的监测和预测;此外,模式识别与自动控制技术的结合可以实现垃圾自动分类和处理