英国最初批准用于初级疫苗接种的所有疫苗均针对原始 SARS-CoV-2 毒株的 S 蛋白;两种使用 mRNA 平台(辉瑞 BioNTech COVID-19 BNT162b2 疫苗(Comirnaty ® )和 Moderna mRNA-1273 COVID-19 疫苗(Spikevax ® )),两种使用腺病毒载体(阿斯利康 COVID-19 ChAdOx1-S 疫苗/Vaxzevria ® 和 Janssen COVID-19 疫苗 Ad26.COV2-S [重组]),一种使用重组 S 蛋白(在杆状病毒感染的昆虫细胞中生长)作为抗原,并添加 Matrix-M TM 佐剂(Novavax Nuvaxovid ®)。后一种佐剂包括两种源自树皮的皂苷。最近批准的加强疫苗(赛诺菲巴斯德,VidPrevtyn Beta ®)也使用重组 S 蛋白,但针对的是 Beta 变体并使用不同的佐剂(参见变体疫苗部分)。
脚和口径疾病(FMD)是一种高度传染性的牲畜病毒疾病,会造成严重的经济损失。FMD病毒(FMDV)属于Picornaviridae和Aphthovirus家族,分为七个血清型(1,2)。七个FMDV血清型之间的交叉保护无法使其预防和控制复杂化(3,4)。fmd通常由症状(例如高烧,口腔中的水泡以及粘性或泡沫状唾液的过度分泌)来鉴定(5)。此外,成年动物可以体重减轻,几个月内无法恢复,雄性睾丸肿胀,并显着减少牛奶的产量。尽管几只感染的动物仍然无症状载体,但它们可以携带病毒并将其传播给其他动物(6,7)。许多国家建议进行疫苗接种,以防止FMD急性扩散;但是,可用的疫苗有几个局限性,例如低抗体滴度和注射部位的局部反应。因此,我们研究了有效的佐剂,以增强疫苗的细胞和体液免疫反应并解决安全问题。韩国属于FMDV血清型池1,主要暴露于FMDV血清型O,A和亚洲1(8)。自2000年以来,韩国的FMD爆发主要归因于血清型O和A。的确,从2017年到2023年,FMD最近发生的FMD爆发是由O型(ME-SA拓扑)和A型(A/ASIA/SEA-97拓扑型)引起的。因此,在这项研究中,使用FMD抗原O PA2(ME-SA拓扑型)和YC(A/Asia/Sea-97拓扑型)制备了测试疫苗。佐剂与特定的疫苗抗原结合使用时会增强和延长免疫反应(9);因此,要开发一种新型的FMD疫苗,必须对各种佐剂进行研究。大多数FMD疫苗都涉及使用灭活的病毒抗原。矿物油基佐剂和氢氧化铝[AL(OH)3],有或没有皂苷,已用作FMD疫苗的传统佐剂,以改善灭活病毒抗原的稳定性和递送(10-13)。已经报道了含有粗皂苷的FMD疫苗,包括在疫苗接种位点进行溶血并引起短寿命抗体反应。因此,比皂苷更安全并可以诱导强烈的免疫反应的Quil-A用作FMD疫苗辅助(14)。尽管有改善的FMD疫苗,但建议重复进行疫苗接种,这是由于低和短寿命的抗体滴度。重复的疫苗接种可能会在注射部位引起局部副作用,这是由于FMD疫苗中包含的矿物油基辅助剂(11、13、15-17)。因此,当前在FMD疫苗中使用的佐剂,特定的免疫刺激性组合需要改进以增强效率和安全性。在先前的研究中,我们确认用树突状细胞(DC)相关的C型凝集素-2(Dectin-2)激动剂诱导的PBMC增殖(18)处理猪外周血单核细胞(PBMC)(DC)相关的C型凝集素-2(DC)相关的C-Type凝集素2(DC)。因此,我们假设Dectin-2激活引起了猪中强大的免疫反应。基于先前的研究,我们使用了Dectin-2激动剂D-Galacto-D-Mannan作为本研究中新型FMD疫苗的辅助。dectin-2是包含
抽象的sansevieria trifasciata prain已知包含植物化合物化合物,并具有治疗各种疾病的潜力。通过搜索Google Scholar,PubMed,NCBI和Science Direct的文章进行了系统的审查,以收集有关已识别化合物的信息以及trifasciata prain叶片的药理学测试结果,包括体外,体内和硅。结果表明,植物化学物质是类黄酮,生物碱,类固醇,皂苷,糖苷,糖苷,多酚和脂肪酸基团的衍生物。这些植物化学物质表现出药理学特性,包括抗糖尿病,抗菌,抗癌,抗二氧化碳,抗生物,抗菌,抗真菌,抗氧化剂,抗氧化剂,抗抗体愈合,抗音均和抗抗性特性。急性毒性测试表明s。trifasciataprain。是安全使用的,LC50值超过2000 mg/kgbw。我们可以得出结论,Sansevieria trifasciata Prain。是一种潜在的草药,是根据其化合物治疗各种疾病的药物。
引言 在全球人口不断增长和气候变化的时代,粮食安全是人类生存和繁荣的主要目标之一 (Sekaran et al. , 2021)。作物改良是实现这一目标的核心战略之一。它包括提高产量和提高植物可食用部分的质量。事实证明,通过增加蛋白质和植物次生代谢物等必需成分的浓度来提高食品质量,对植物本身和食用这些植物的人类都有益 (Sahu et al. , 2022)。研究人员通过实验证实,作物改良与蛋白质含量提高之间存在相关性 (Chakraborty et al. , 2010; Zhang et al. , 2018a; Akbar et al. , 2023)。粳稻品种的蛋白质含量与氮和钾含量之间存在高度显著的正相关性 (Zhang et al. , 2018a)。同样,在
多西汀和多西替明(脱氧胞苷 (dC) 和脱氧胸苷 (dT),MT1621)是一种固定剂量联合疗法,通过恢复线粒体 DNA (mtDNA) 复制保真度来针对 TK2d 的潜在病理生理学。多西汀和多西替明由口服的脱氧核苷(mtDNA 的组成部分)组合而成。脱氧核苷联合疗法可改善核苷酸平衡、增加 mtDNA 拷贝数、改善细胞功能并延长 TK2d 临床前模型的寿命。2 通过增加体内胸苷和脱氧胞苷的水平,该药物有望弥补 TK2 活性的不足,从而改善线粒体 DNA 的产生并帮助缓解患者的症状。3 多西汀和多西替明目前正在临床开发中,用于治疗 TK2d。在关键的 II 期试验 (NCT03845712) 中,多西汀和多西替明口服给药,最大剂量为 800 mg/kg/天 (dC 为 400 mg/kg/天,dT 为 400 mg/kg/天),以耐受为准。1
Gorontalo 96128 Korespestensi Penulis:nurvitaabdullah@gmail.com摘要。Garuga Floribunda(Garuga Floribunda Decne)植物是以各种药用特性而闻名的物种之一。这项研究旨在研究α-葡萄糖苷酶和α-淀粉酶的抑制活性,并确定Garuga Floribunda叶片作为抗糖尿病剂的最佳浓度。通过使用甲醇作为溶剂作为萃取过程获得叶片的提取,并使用d-硝基苯基-α-D-糖酰胺(P-NPG)对α-葡萄糖苷酶对α-葡萄糖苷酶的抑制活性进行了测试。该方法是UV-VIS分光光度法。该植物的植物化学测试揭示了类黄酮,生物碱,皂苷,单宁,类固醇和萜类化合物的存在。抑制测试结果表明,Garuga Floribundaleaves的甲醇提取物对这两种酶表现出显着的抑制活性。对α-葡萄糖苷酶的最高抑制百分比为91.09%,表明抗糖尿病活性很高。同时,对α-淀粉酶的抑制作用为7.56%,没有明显的抗糖尿病活性。抑制两种酶的最佳浓度为1000 ppm。关键词:跳蚤,抑制,酶,抗糖尿病abtrak。Tumbuhan Buhu(Garuga Floribunda Decne)Merupakan Salah Satu Spesies Tumbuhan Dengan Beberapa Khasiat Obat。metode yang digunakan adalah metode spektrofotometer uv-vis。kata kunci:buhu,inhibisi,enzim,抗糖尿病这项研究的目的是研究α-葡萄糖苷酶和α-淀粉酶的抑制活性,并找出Buhu叶甲醇提取物作为抗糖尿病的最佳浓度。buhu叶提取物是通过使用甲醇溶剂提取的过程获得的,其抑制活性使用dNS-DNS substrate(3-氨基酯(3-二氨酸)(3-二氨酸)(3-氨基型)(使用α-氨基酶),使用p-硝基苯基D-D-D-D-D-D-丙氨酸酶(P-NPG)底酸(P-NPG)底物测试。植物化学测试包括类黄酮化合物,生物碱,皂苷,单宁,类固醇和萜类化合物。抑制测试的结果表明,布胡叶的甲醇提取物对两种酶具有显着的抑制活性。抑制α-葡萄糖苷酶的最高百分比为91.09±1.52 ppm,分为抗糖尿病非常活跃。对于α-淀粉酶5.33±0.79 ppm,不活跃为抗糖尿病。
RNase T1 是一种来源于米曲霉 (Aspergillus oryzae) 的核糖核 酸内切酶,可特异性地在单链 RNA 的鸟嘌呤核糖核苷酸 (G) 后进行 切割,产生 3' 磷酸末端。 RNase T1 能够形成核苷 2' , 3'- 环磷酸中 间体,以切割 3'- 鸟苷残基与邻近核苷 5'-OH 基团之间的磷酸二酯键, 产生含末端 3'-GMP 的寡核苷酸和 3'-GMP 。
对某些主要植物化学物质的定量分析和对ampelocissus latifolia(Roxb。)元素的测定planch theng K. B.1,Korpenwar A. N. 2 1 Late B. S. Arts,N。G. Science and A. G. Commerce College,Sakharkherda,Maharashtra,India 2 Rashtrapita Mahatma Gandhi Arts Arts Collector,Nagbhid,Nagbhid,Dist。Chandrapur,印度马哈拉施特拉邦,印度对叶片latifolia tuberous根的抽象定量分析,以通过标准方法鉴定诸如总生物碱,类黄酮,皂苷和Terpenoids之类的植物基质。定量估计表明,阿姆皮西斯latifolia结节粉含有生物碱:9.6%,类黄酮:8.14%,萜类化合物:5.23%和皂苷:13.58%。乙醇肥皂的提取粉末粉末,显示了总共有24个元素,例如Al,B,Ba,Ba,Ca,Ca,Ca,Cr,Cu,Cu,Cu,Cu,Fe,hf,hf,hf,hf,hf,hf,hf,hf,hf,hf,k,li,mg,mg,mn,mn,mo,na,na,ni,ni,yb y y y,y,y,y,y,对六个元素的定量分析显示为Fe = 0.051 ppm,mg = 0.045 ppm,al = 2.06 ppm,k = 0.49 ppm,CA = 0.09 ppm,CR = 0.00009 ppm。在XRD分析中获得的元素也得到了ICP-AES结果。元素含量取决于各种因素,例如气候,植物标本的位置和植物生长的土壤组成。块茎根中存在各种植物化合物和元素表明该植物在医学中的潜力。关键字:ICP-AES光谱法,X射线衍射,Ampelocissus latifolia,Soxhlet提取。I.it简介药用植物单独或组合中用于各种药物制剂(1)。在植物中发现的一个主要的二级代谢产物,例如生物碱,类固醇,单宁和苯酚化合物,它们在植物的几乎所有部分中都或几乎所有部分产生并沉积了(2)(2)。药用植物和矿物质元素的各种活性成分在代谢中起重要作用(3)。确定植物中的矿物元素非常重要,因为许多药物的质量取决于矿物质的含量和类型(4)。药理学作用的药用植物中无机元素的存在非常重要(5)。
摘要:姜黄(Curcuma Longa L.)是一种有据可查的药用植物,用作食品,化妆品和药物。这项研究的目的是评估矿物质肥料对在乌兹基斯坦不同地区生长的姜黄(Curcuma Longa L.)根茎的植物化学评估,姜黄素,类黄酮和总蛋白质含量的影响。实验是在随机块设计中进行的,具有三个复制:在塔什肯丁地区Kibray区的遗传学和植物实验生物学研究所进行的迷你图实验,以及在Surkhandarya的Surkhandarya Scientific实验站的植物性实验站,素食,瓜作物和马铃薯研究所,Uzbekistan,Uzbekistan。实验治疗包括:T1-对照(无肥料),T2 -NPK治疗(申请率75:50:50 kg/ha),T3 -NPK治疗(申请率125:100:100:100 kg/ha)和T4 -NPK + BZNFE治疗(申请率100:75:75:75:75:75:75:3:3:6:6:6:6:6:6 kg/ha)。在八个月后,确定了八个月后的植物化学性质,姜黄素,类黄酮和姜黄根茎的总蛋白质含量。结果表明,在不同地区生长的姜黄根茎的甲醇提取物中存在生物碱,萜类,单宁,类固醇,类固醇,碳水化合物和皂苷(Tashkent和Surkhandarya)。氯仿提取物显示出六种植物化学物质,包括生物碱,萜类化合物,类黄酮,类固醇,碳水化合物和皂苷,来自两个地区,Tashkent和Surkhandarya的姜黄体根茎。然而,NPK + BZNFE治疗(申请率100:75:75:3:6:6:6 kg/ha)显着增加了在Tashkent和Surkhandarya地区生长的姜黄根茎的姜黄素,鲁丁和槲皮素含量。在NPK kg/ha处理中记录了最高的总蛋白质含量(申请率125:100:100 kg/ha),与对照相比显示出显着增加。It was concluded that the NPK + BZnFe treatment (application rate 100:75:75:3:6:6 kg/ha) significantly increased the curcumin and flavonoid contents of turmeric rhizomes grown in the Tashkent and Surkhandarya regions compared to the control.