和组织、蛋白质组学、药物开发和疾病诊断。在临床诊断中,基于荧光的传感被广泛用于荧光标记的形式,其能够快速、灵敏地定量检测目标分析物。此外,与其他检测方案相比,具有不同光谱特征的各种有机荧光染料的可用性使得能够对来自同一样本的几种分析物进行多路复用测量。荧光检测已经在许多临床诊断工具中实现,例如荧光免疫测定(例如,荧光链接免疫吸附测定(FLISA)、直接荧光抗体(DFA)测试和间接荧光抗体(IFA)测试)、荧光原位杂交(FISH)、蛋白质印迹(WB)、聚合酶链反应(PCR)和流式细胞术。然而,实验室测试程序可能很耗时,需要训练有素的人员和专门的设备,因此通常与较高的成本相关。即时诊断 (POCT) 领域发展迅速,它能够在需要立即做出临床决策或资源有限的环境下提供经济实惠且易于操作的诊断,从而有可能彻底改变临床护理。[1] 即时诊断设备的标准由世界卫生组织的 ASSURED 指南设定,其中理想的即时诊断系统应经济实惠(对于有感染风险的人)、灵敏(假阴性最少)、特异(假阳性最少)、用户友好(测试步骤最少)、快速而强大(周转时间短且无需冷藏)、无需设备(不需要复杂的设备)并可即时交付(交付给最终用户)。[2] 目前,大量研究工作致力于探索最适合即时诊断的可能检测方案。现有的例子包括但不限于电化学、磁性、表面等离子体共振 (SPR)、质谱、拉曼散射、比色和荧光生物传感器。为了缩小本综述的范围,本文我们将仅关注基于荧光的测试,因为其他技术已在其他地方进行了综述。[3–13]
摘要:大肠癌是全球癌症死亡的第三大最常见的恶性肿瘤,也是第二个主要原因。多项研究已将患者血清中癌细胞的抗原水平与疾病预后不良联系在一起。因此,检测低水平的癌症抗原的能力在较早的疾病诊断,评估和复发监测中应用。现有的癌症抗原检测方法通常需要多种试剂,训练有素的操作员或复杂的程序。一种减轻这些问题的方法是横向流量测定,这是一个基于纸张的平台,允许在复杂混合物中检测和量化目标分析物。测试很快,是护理点,拥有较长的保质期,并且可以在环境条件下存储,使其非常适合在各种设置中使用。虽然侧向流程通常使用球形金纳米颗粒来产生经典的红色信号,但最近的文献表明,球形的替代形态可以提高检测的极限。在这项工作中,我们报告了替代金纳米颗粒形态的应用,金纳米形状(长度约为35 nm)和金纳米酮(直径约为90 nm),用于癌甲型抗原的横向流量测定法。在比较测定中,与市售的球形金纳米颗粒相比,对于相同的抗体载荷和总金含量而言,金纳米酮的检测极限约为2倍,而每种测试中金纳米酮的数量〜3.2×x降低。在全面优化的测试中,使用金纳米酮获得了14.4 pg/mL的限制,比以前报道的基于金纳米粒子基于金纳米粒子的癌细胞抗原抗原横向流动测定法相比有24倍改善。关键字:黄金,纳米颗粒,侧流测定,癌症,生物标志物,等级纳米颗粒,定量,癌症抗原
数字健康计划可在支持生活方式改变以预防和降低心血管疾病 (CVD) 风险方面发挥关键作用。新计划的一个关键关注点是了解谁有兴趣参与。因此,本研究的主要目标是利用电子健康记录 (EHR) 来预测人们对一款名为 Lark Heart Health 的数字健康应用程序的兴趣。由于之前的研究表明男性不太可能使用以预防为重点的数字健康计划,因此二次分析评估了招募和入学方面的性别差异。数据来自一项正在进行的心脏健康计划试点研究,该计划提供数字健康行为指导和 CVD 预防调查。EHR 数据用于预测收到研究招募电子邮件的潜在计划参与者是否通过“点击”电子邮件了解更多信息来对该计划表现出兴趣。主要目标分析使用了后向消除回归和极端梯度提升模型。招募电子邮件发送给了 8,649 名拥有可用 EHR 数据的患者;其中 1,092 人表现出兴趣(即点击),345 人选择参与研究。预测表现出兴趣的可能性更高的 EHR 变量包括较高的体重指数 (BMI)、较少的实验室升高值、较低的 HbA1c、不吸烟和认定为白种人。次要客观分析表明,男性和女性对该项目表现出相似的兴趣,并且在整个招募和入学过程中占同等比例。总之,BMI、升高的实验室升高值、HbA1c、吸烟状况和种族成为项目兴趣的主要预测因素;相反,性别、年龄、心血管疾病史、慢性健康问题史和药物使用情况并不能预测项目兴趣。我们还发现该项目的招募和入学过程中没有性别差异。这些见解有助于改进数字健康工具,以最好地服务于那些感兴趣的人,并突出显示可能受益于通过根据他们的兴趣量身定制的额外招募工作所推广的行为干预工具的群体。
光学生物传感器具有直接、实时和无标记生物分子检测的巨大优势。因此,由于它们具有高特异性和灵敏度、紧凑性和成本效益,因此已广泛应用于医疗保健、食品质量控制和药物发现领域。[1,2] 表面等离子体共振 (SPR) 技术一直是终端用户中占主导地位的技术,目前在光学生物传感器市场中占有最大份额。在传统的 SPR 系统中,来自薄金膜的高度受限等离子体场用于通过可见光折射测量来监测生物识别事件(即生物受体和目标分析物结合后引起的折射率变化)。[3] 同时,中红外 (mid-IR) 光谱在研究发展中引起了广泛关注,因为它显示出对生物分析物的联合分子特异性识别和定量的有希望的机会。中红外窗口范围在 2 至 20 µ m 之间,具有分子独特的振动吸收带,可通过光吸收进行特异性探测。[4,5] 因此,中红外光谱测量可以揭示生物分析物的分子指纹,提供有关其分子成分和结构组成的信息。然而,主要的挑战仍然在于克服 µ m 级红外波长和 nm 级生物分子之间的弱光学相互作用。表面增强红外吸收 (SEIRA) 光谱法已被提出通过采用支持高度亚波长表面结合光学模式的纳米结构超表面来克服较弱的光分子相互作用。[6] 最成熟的 SEIRA 平台基于支持局部 SPR (LSPR) 的金纳米结构,已证明生物分子检测(例如蛋白质和 DNA)可将 SEIRA 信号增强 10 到 100 倍。 [7–10] 尽管最近的 SEIRA 发展获得了更好的光学灵敏度(例如,采用金属-绝缘体-金属结构的完美吸收体设计),[11,12] 但金属基超表面由于缺乏光谱选择性和相对较差的红外场限制(典型衰减长度 ≈ 10 2 d )而受到限制。[13]
在过去的几十年中,横向流动检测 (LFA) 已被证明是在临床和环境应用中最成功的即时诊断检测之一。[1–4] 纸基生物传感器具有几个重要优势,例如成本效益、可持续性、免清洗操作性和高度可调性。[5,6] 此外,由于易于使用、速度快、操作简单,LFA 常用于需要大规模测试和定性评估的应用。[2,7,8] 例如,LFA 通常用于在家中诊断怀孕 [9],或者最近用于在药房和移动检测站快速识别 COVID-19 特异性抗体和抗原的存在。[7,10,11] 尽管如此,它们公认的低灵敏度 [12] 和难以解释微弱带状 [13] 仍然阻碍其在需要定量检测目标分析物的具有挑战性的临床应用中的使用。 [14] 为了克服这一限制,研究人员开发了不同的策略来提高 LFA 的灵敏度 [12,15–18] 并实现现场定量分析。[19–21] 然而,这些方法仍然大多局限于学术实验室,因为它们很复杂,而且成本可能很高,会影响 LFA 在现实环境中的可负担性和可用性。[22] 因此,迫切需要简单且经济有效的策略来克服 LFA 的上述局限性,使其能够在广泛的临床场景中实施。目前,大多数 LFA 都采用比色标记(例如金纳米粒子和聚苯乙烯珠)[23,24],可以方便地进行肉眼或基于智能手机的检测。前者仍然是 LFA 的首选检测模式,因为它不需要设备并且具有成本效益,因此非常适合资源有限的环境。 [25] 相反,后一种方法正在兴起(这要归功于智能手机的普及),并且倾向于提高测试的可重复性(即消除了肉眼检测的主观部分)。 [26–30] 然而,在这两种情况下,使用比色标签都会将 LFA 的读数限制为单色信号的识别/测量。不幸的是,这可能会产生不确定的情况,因为微弱的条带的存在可能不
在相关努力中,[10] 我们扩展了适用于均相 FRET 检测的分子识别元件列表,包括变构转录因子 (aTF),这是一类特定的底物结合蛋白,可在离散蛋白质结构域中结合 DNA 和小分子效应物。在这里,我们描述了使用特征明确的 aTF TetR 进行分子识别的其他新型传感器,使用改变 aTF-DNA 结合亲和力的 aTF 变体来调节传感器灵敏度,并展示了一种带有遗传编码供体荧光团的额外传感器设计。这些额外的传感器展示了我们方法的普遍性,同时详细介绍了一种更容易被各种研究小组采用的传感器设计。变构转录因子是调节蛋白,包含 DNA 结合结构域和效应物结合结构域,能够以高特异性和选择性识别小分子。 [11] 在目标分析物存在的情况下,aTF 对其 DNA 结合序列的亲和力会受到调节,从而促进下游基因表达的阻遏物或去阻遏物调节。[11] aTF 与其同源 DNA 和效应配体之间独特但相互关联的结合提供了一种内在的转导机制,我们将其与 FRET 偶联以进行光学读出。[10] 其他先前描述的基于底物结合蛋白的 FRET 传感器通过染料标记的配体的置换(竞争性测定)或蛋白质的构象变化来实现供体-受体距离的变化。[6,7] 我们的基于 aTF 的 FRET 传感器利用供体标记的 aTF 与其受体标记的同源 DNA 序列的分析物响应性解离来引起供体-受体距离的大幅变化。因此,这些 FRET 传感器无需对配体进行染料标记,因为染料标记会改变配体的结合行为 [12],同时能够通过供体和受体荧光团的完全解离产生显著的信号变化(图 1)。我们之所以选择 TetR 进行这项研究,是因为它是一种特性良好的 aTF,在实验室环境中广泛用于基因调控和诱导蛋白表达。[11] TetR
在以金融交易快速数字化和现金使用下降为标志的时代中,中央银行数字货币(CBDC)已成为研发的重点。向数字支付的这种转变伴随着区块链,加密货币和稳定币的扩散,对金融景观构成了机会和威胁。作为中央银行,包括国际定居银行等实体,从事CBDC的广泛研究和开发,必须解决与这些进步相关的不断升级的隐私问题。隐私(广泛定义)涵盖了个人和实体控制其个人信息的权利,以确保其被收集,使用和共享,以尊重其自主权和保护不需要的披露或剥削的方式。在CBDC中存在的隐私问题是多方面的,涉及对最终用户和商人的担忧。我们数字世界的相互联系的性质导致了更多的个人信息收集,这对于个人和企业管理隐私风险并防止未经授权的访问和数据滥用至关重要。中央银行负责引入CBDC,在平衡隐私与数字金融景观的合规要求方面面临挑战。然而,随着数字环境的发展,随着敏感数据的扩散,这些法律正在发展以应对新兴挑战。CBDC的设计师必须采取一种主动的方法,从一开始就优先考虑用户数据保护权。现有的隐私法律法规,例如《通用数据保护法规》(欧洲议会和2016年欧盟理事会)和《个人信息保护与电子文件法》(2000年),为维护个人数据提供了一个基本框架。这涉及处理敏感的用户数据,并需要采用隐私设计方法,包括集成隐私增强技术(PET)并将隐私注意事项嵌入体系结构中,以确保用户信息的保护和机密性。这种方法不仅可以确保遵守现有法规,还可以预期并解决新兴的问题。最近,宠物已成为解决与CBDC相关的隐私问题的关键手段。使用宠物设计的CBDC可以最大程度地减少个人数据曝光,并最大程度地提高数据完整性和机密性。虽然对宠物的共同定义尚无共识,但在本文中,我们研究了一套多种技术,这些技术保留了交易的机密性,并减轻了增加数据收集和网络威胁所带来的风险。我们在第2节中进一步对CBDC的候选隐私解决方案进行了分类。随着中央银行探索这些宠物在CBDC系统设计中的整合,了解这种技术进步的含义和好处变得至关重要。适用于数字支付的潜在宠物是广泛的,涵盖了加密,统计和程序技术。2021)已实施零知识证明(ZKP)(Ben-Sasson等人纸张的其余部分如下组织。ASROW和SAMONAS(2021)和英格兰银行(2023)总结了现有的宠物,这些宠物有可能用于CBDC系统的设计。区块链行业已经实施了许多密码宠物技术,以保护发件人,接收器和交易金额的机密性。例如,Monero(van(Saberhagen 2013)已实施了由环签名(Rivest,Shamir和Tauman 2001)和Pedersen承诺(Pedersen 1992); Zcash(Hopwood等人2018)提供交易机密性;瑞士国家银行和国际定居银行(2023)探索了CBDC设计中盲人签名的可行性(Chaum 1983)。这项研究的主要询问重点是在CBDC设计框架内使用宠物来保护消费者的个人数据,同时解决监管合规性的必要性。因此,本文介绍了CBDC设计范式,以探索在提供高水平隐私的尖端宠物的使用。该系统的目的是使消费者在CBDC系统中控制其个人数据,在用户隐私期望与有关反货币洗涤(AML)和反恐融资的监管框架需求之间取得了微妙的平衡。我们首先提出了可以应用于数字货币的宠物的全面和系统描述。我们对每个组件进行了深入的隐私目标分析,然后对宠物在每个组件的设计中可能整合进行研究。然后,我们公布了一个以隐私为中心的CBDC设计框架,包括关键组件,例如用户入门,身份和访问管理,交易处理,监管合规性,数据分析和数字钱包。此外,我们确定并解决与将宠物纳入提议的CBDC设计相关的固有挑战。第2节简要总结了现有的宠物技术